Перевод: со всех языков на все языки

со всех языков на все языки

стоимость отказа

  • 1 стоимость отказа

    Большой англо-русский и русско-английский словарь > стоимость отказа

  • 2 стоимость отказа

    Универсальный русско-английский словарь > стоимость отказа

  • 3 стоимость отказа

    Русско-английский словарь по нефти и газу > стоимость отказа

  • 4 стоимость отказа от туристической путёвки

    Универсальный русско-немецкий словарь > стоимость отказа от туристической путёвки

  • 5 failure cost

    стоимость отказа; pl. издержки вследствие отказа

    * * *
    стоимость отказа; pl издержки вследствие отказа
    * * *

    Англо-русский словарь нефтегазовой промышленности > failure cost

  • 6 failure cost

    Большой англо-русский и русско-английский словарь > failure cost

  • 7 failure cost

    стоимость отказа; pl издержки вследствие отказа

    The English-Russian dictionary on reliability and quality control > failure cost

  • 8 abandonment value

    фин. ценность [эффект\] прекращения [отказа, ликвидации\]* (сумма, которая может быть получена при ликвидации какого-л. актива либо при досрочном прекращении какого-л. инвестиционного проекта; для инвестиционного проекта стоимость отказа обычно определяется как ликвидационная стоимость активов, участвующих в реализации данного проекта)
    See:

    Англо-русский экономический словарь > abandonment value

  • 9 failure cost

    1) Экономика: издержки вследствие отказа (напр. оборудования)

    Универсальный англо-русский словарь > failure cost

  • 10 abandonment cost

    фин., обычно мн. стоимость отказа [прекращения, ликвидации\]* (затраты, связанные с отказом от использования каких-л. активов, в том числе издержки по ликвидации данных активов; термин часто используется по отношению к затратам, которые добывающая компания понесет при отказе от дальнейшей эксплуатации какого-л. естественного ресурса (скважины, разреза и т. п.) в связи с необходимостью демонтировать оборудование, провести работы по восстановлению ландшафта и т. д.)
    See:

    Англо-русский экономический словарь > abandonment cost

  • 11 Reiserücktrittskosten

    Универсальный немецко-русский словарь > Reiserücktrittskosten

  • 12 полевая шина

    1. fieldbus
    2. field bus

     

    полевая шина
    -
    [Интент]

    полевая магистраль по зарубежной терминологии
    Имеет много терминов-синонимов и обозначает специализированные последовательные магистрали малых локальных сетей (МЛС), ориентированны на сопряжение с ЭВМ рассредоточенных цифровых датчиков и исполнительных органов. Магистрали рассчитаны на применение в машиностроении, химической промышленности, в системах автоматизации зданий, крупных установках, бытовых электронных системах, системах автомобильного оборудования, малых контрольно-измерительных и управляющих системах на основе встраиваемых микроЭВМ и т. п. Основными магистралями являются Bitbus, MIL STD-1553В. В настоящее время рабочими группами IEC (65С и SP-50) стандартизируются два основных типа МЛС: высокоскоростные и низкоскоростные, ориентированные на датчики.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    ЧТО ТАКОЕ FIELDВUS?
    Так пишется оригинальный термин, который в русском переводе звучит как «промышленная сеть». Fieldbus — это не какой-то определенный протокол передачи данных и не тип сетевой архитектуры, этот термин не принадлежит ни одной отдельно взятой компании и обозначает скорее сферу применения, чем какую-либо конкретную сетевую технологию.
    Давайте попробуем сформулировать лишь некоторые основные требования, которые можно предъявить к «идеальной» промышленной сети.
    1. Производительность.
    2. Предсказуемость времени доставки информации.
    3. Помехоустойчивость.
    4. Доступность и простота организации физического канала передачи данных.
    5. Максимальный сервис для приложений верхнего уровня.
    6. Минимальная стоимость устройств аппаратной реализации, особенно на уровне контроллеров.
    7. Возможность получения «распределенного интеллекта», путем предоставления максимального доступа к каналу нескольким ведущим узлам.
    8.Управляемость и самовосстановление в случае возникновения нештатных ситуаций.

    [Сергей Гусев. Краткий экскурс в историю промышленных сетей]


    Международный стандарт IEC 61158 “Fieldbus for use in Industrial Control Systems” («Промышленная управляющая сеть для применения в промышленных системах управления») определяет восемь независимых и несовместимых коммуникационных технологий, из которых FOUNDATION Fieldbus H1 и PROFIBUS PA стали в значительной степени преобладающими в различных отраслях промышленности.
    Эти промышленные сети соответствуют требованиям стандарта IEC 61158 2, который устанавливает физический уровень так называемых промышленных сетей H1.
    Основными требованиями к промышленным сетям H1 являются:
    ● передача данных и питание устройств нижнего уровня по одной витой паре;
    ● гибкость при проектировании различных топологий сети;
    ● совместимость всех полевых приборов;
    ● взрывобезопасность при установкево взрывоопасных зонах;
    ● распределение одной инфраструктуры на многочисленные сегменты.

    [Виктор Жданкин. Концепция FieldConnex® для промышленных сетей FOUNDATION Fieldbus H1 и PROFIBUS_PA: повышение производительности и снижение затрат. СТА 2/2009]


    Термин полевая шина является дословным переводом английского термина fieldbus.
    Термин промышленная сеть является более точным переводом и в настоящее время именно он используется в профессиональной технической литературе.

    Промышленная сеть — сеть передачи данных, связывающая различные датчики, исполнительные механизмы, промышленные контроллеры и используемая в промышленной автоматизации. Термин употребляется преимущественно в автоматизированной системе управления технологическими процессами (АСУТП).

    Устройства используют сеть для:

    • передачи данных, между датчиками, контроллерами и исполнительными механизмами;
    • диагностики и удалённого конфигурирования датчиков и исполнительных механизмов;
    • калибрования датчиков;
    • питания датчиков и исполнительных механизмов;
    • связи между датчиками, исполнительными механизмами, ПЛК и АСУ ТП верхнего уровня.

    В промышленных сетях для передачи данных применяют:

    • электрические линии;
    • волоконно-оптические линии;
    • беспроводную связь (радиомодемы и Wi-Fi).

    Промышленные сети могут взаимодействовать с обычными компьютерными сетями, в частности использовать глобальную сеть Internet.

    [ Википедия]


    Главной функцией полевой шины является обеспечение сетевого взаимодействия между контроллерами и удаленной периферией (например, узлами ввода/вывода). Помимо этого, к полевой шине могут подключаться различные контрольно-измерительные приборы ( Field Devices), снабженные соответствующими сетевыми интерфейсами. Такие устройства часто называют интеллектуальными ( Intelligent Field Devices), так как они поддерживают высокоуровневые протоколы сетевого обмена.

    Пример полевой шины представлен на рисунке 1.

    4911
    Рис. 1. Полевая шина.

    Как уже было отмечено, существует множество стандартов полевых шин, наиболее распространенные из которых приведены ниже:

    1. Profibus DP
    2. Profibus PA
    3. Foundation Fieldbus
    4. Modbus RTU
    5. HART
    6. DeviceNet

    Несмотря на нюансы реализации каждого из стандартов (скорость передачи данных, формат кадра, физическая среда), у них есть одна общая черта – используемый алгоритм сетевого обмена данными, основанный на классическом принципе Master-Slave или его небольших модификациях.
    Современные полевые шины удовлетворяют строгим техническим требованиям, благодаря чему становится возможной их эксплуатация в тяжелых промышленных условиях. К этим требованиям относятся:

    1. Детерминированность. Под этим подразумевается, что передача сообщения из одного узла сети в другой занимает строго фиксированный отрезок времени. Офисные сети, построенные по технологии Ethernet, - это отличный пример недетерминированной сети. Сам алгоритм доступа к разделяемой среде по методу CSMA/CD не определяет время, за которое кадр из одного узла сети будет передан другому, и, строго говоря, нет никаких гарантий, что кадр вообще дойдет до адресата. Для промышленных сетей это недопустимо. Время передачи сообщения должно быть ограничено и в общем случае, с учетом количества узлов, скорости передачи данных и длины сообщений, может быть заранее рассчитано.
    2. Поддержка больших расстояний. Это существенное требование, ведь расстояние между объектами управления может порой достигать нескольких километров. Применяемый протокол должен быть ориентирован на использование в сетях большой протяженности.
    3. Защита от электромагнитных наводок. Длинные линии в особенности подвержены пагубному влиянию электромагнитных помех, излучаемых различными электрическими агрегатами. Сильные помехи в линии могут исказить передаваемые данные до неузнаваемости. Для защиты от таких помех применяют специальные экранированные кабели, а также оптоволокно, которое, в силу световой природы информационного сигнала, вообще нечувствительно к электромагнитным наводкам. Кроме этого, в промышленных сетях должны использоваться специальные методы цифрового кодирования данных, препятствующие их искажению в процессе передачи или, по крайней мере, позволяющие эффективно детектировать искаженные данные принимающим узлом.
    4. Упрочненная механическая конструкция кабелей и соединителей. Здесь тоже нет ничего удивительного, если представить, в каких условиях зачастую приходиться прокладывать коммуникационные линии. Кабели и соединители должны быть прочными, долговечными и приспособленными для использования в самых тяжелых окружающих условиях (в том числе агрессивных атмосферах).

    По типу физической среды полевые шины делятся на два типа:

    1. Полевые шины, построенные на базе оптоволоконного кабеля.
      Преимущества использования оптоволокна очевидны: возможность построения протяженных коммуникационных линий (протяженностью до 10 км и более); большая полоса пропускания; иммунитет к электромагнитным помехам; возможность прокладки во взрывоопасных зонах.
      Недостатки: относительно высокая стоимость кабеля; сложность физического подключения и соединения кабелей. Эти работы должны выполняться квалифицированными специалистами.
    2. Полевые шины, построенные на базе медного кабеля.
      Как правило, это двухпроводной кабель типа “витая пара” со специальной изоляцией и экранированием. Преимущества: удобоваримая цена; легкость прокладки и выполнения физических соединений. Недостатки: подвержен влиянию электромагнитных наводок; ограниченная протяженность кабельных линий; меньшая по сравнению с оптоволокном полоса пропускания.

    Итак, перейдем к рассмотрению методов обеспечения отказоустойчивости коммуникационных сетей, применяемых на полевом уровне. При проектировании и реализации этот аспект становится ключевым, так как в большой степени определяет характеристики надежности всей системы управления в целом.

    На рисунке 2 изображена базовая архитектура полевой шины – одиночная (нерезервированная). Шина связывает контроллер С1 и четыре узла ввода/вывода IO1-IO4. Очевидно, что такая архитектура наименее отказоустойчива, так как обрыв шины, в зависимости от его локализации, ведет к потере коммуникации с одним, несколькими или всеми узлами шины. В нашем случае в результате обрыва теряется связь с двумя узлами.

    4912
    Рис. 2. Нерезервированная шина.

    Здесь важное значение имеет термин “единичная точка отказа” (SPOF, single point of failure). Под этим понимается место в системе, отказ компонента или обрыв связи в котором приводит к нарушению работы всей системы. На рисунке 2 единичная точка отказа обозначена красным крестиком.

    На рисунке 3 показана конфигурация в виде дублированной полевой шины, связывающей резервированный контроллер с узлами ввода/вывода. Каждый узел ввода/вывода снабжен двумя интерфейсными модулями. Если не считать сами модули ввода/вывода, которые резервируются редко, в данной конфигурации единичной точки отказа нет.

    4913
    Рис. 3. Резервированная шина.

    Вообще, при построении отказоустойчивых АСУ ТП стараются, чтобы единичный отказ в любом компоненте (линии связи) не влиял на работу всей системы. В этом плане конфигурация в виде дублированной полевой шины является наиболее распространенным техническим решением.

    На рисунке 4 показана конфигурация в виде оптоволоконного кольца. Контроллер и узлы ввода/вывода подключены к кольцу с помощью резервированных медных сегментов. Для состыковки медных сегментов сети с оптоволоконными применяются специальные конверторы среды передачи данных “медь<->оптоволокно” (OLM, Optical Link Module). Для каждого из стандартных протоколов можно выбрать соответствующий OLM.

    4914
    Рис. 4. Одинарное оптоволоконное кольцо.

    Как и дублированная шина, оптоволоконное кольцо устойчиво к возникновению одного обрыва в любом его месте. Система такой обрыв вообще не заметит, и переключение на резервные интерфейсные и коммуникационные модули не произойдет. Более того, обрыв одного из двух медных сегментов, соединяющих узел с оптоволоконным кольцом, не приведет к потере связи с этим узлом. Однако второй обрыв кольца может привести к неработоспособности системы. В общем случае два обрыва кольца в диаметрально противоположных точках ведут к потере коммуникации с половиной подключенных узлов.

    На рисунке 5 изображена конфигурация с двойным оптическим кольцом. В случае если в результате образования двух точек обрыва первичное кольцо выходит из строя, система переключается на вторичное кольцо. Очевидно, что такая архитектура сети является наиболее отказоустойчивой. На рисунке 5 пошагово изображен процесс деградации сети. Обратите внимание, сколько отказов система может перенести до того, как выйдет из строя.

    4915
    Рис. 5. Резервированное оптоволоконное кольцо.

    [ http://kazanets.narod.ru/NT_PART1.htm]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > полевая шина

  • 13 field bus

    1. полевая шина

     

    полевая шина
    -
    [Интент]

    полевая магистраль по зарубежной терминологии
    Имеет много терминов-синонимов и обозначает специализированные последовательные магистрали малых локальных сетей (МЛС), ориентированны на сопряжение с ЭВМ рассредоточенных цифровых датчиков и исполнительных органов. Магистрали рассчитаны на применение в машиностроении, химической промышленности, в системах автоматизации зданий, крупных установках, бытовых электронных системах, системах автомобильного оборудования, малых контрольно-измерительных и управляющих системах на основе встраиваемых микроЭВМ и т. п. Основными магистралями являются Bitbus, MIL STD-1553В. В настоящее время рабочими группами IEC (65С и SP-50) стандартизируются два основных типа МЛС: высокоскоростные и низкоскоростные, ориентированные на датчики.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    ЧТО ТАКОЕ FIELDВUS?
    Так пишется оригинальный термин, который в русском переводе звучит как «промышленная сеть». Fieldbus — это не какой-то определенный протокол передачи данных и не тип сетевой архитектуры, этот термин не принадлежит ни одной отдельно взятой компании и обозначает скорее сферу применения, чем какую-либо конкретную сетевую технологию.
    Давайте попробуем сформулировать лишь некоторые основные требования, которые можно предъявить к «идеальной» промышленной сети.
    1. Производительность.
    2. Предсказуемость времени доставки информации.
    3. Помехоустойчивость.
    4. Доступность и простота организации физического канала передачи данных.
    5. Максимальный сервис для приложений верхнего уровня.
    6. Минимальная стоимость устройств аппаратной реализации, особенно на уровне контроллеров.
    7. Возможность получения «распределенного интеллекта», путем предоставления максимального доступа к каналу нескольким ведущим узлам.
    8.Управляемость и самовосстановление в случае возникновения нештатных ситуаций.

    [Сергей Гусев. Краткий экскурс в историю промышленных сетей]


    Международный стандарт IEC 61158 “Fieldbus for use in Industrial Control Systems” («Промышленная управляющая сеть для применения в промышленных системах управления») определяет восемь независимых и несовместимых коммуникационных технологий, из которых FOUNDATION Fieldbus H1 и PROFIBUS PA стали в значительной степени преобладающими в различных отраслях промышленности.
    Эти промышленные сети соответствуют требованиям стандарта IEC 61158 2, который устанавливает физический уровень так называемых промышленных сетей H1.
    Основными требованиями к промышленным сетям H1 являются:
    ● передача данных и питание устройств нижнего уровня по одной витой паре;
    ● гибкость при проектировании различных топологий сети;
    ● совместимость всех полевых приборов;
    ● взрывобезопасность при установкево взрывоопасных зонах;
    ● распределение одной инфраструктуры на многочисленные сегменты.

    [Виктор Жданкин. Концепция FieldConnex® для промышленных сетей FOUNDATION Fieldbus H1 и PROFIBUS_PA: повышение производительности и снижение затрат. СТА 2/2009]


    Термин полевая шина является дословным переводом английского термина fieldbus.
    Термин промышленная сеть является более точным переводом и в настоящее время именно он используется в профессиональной технической литературе.

    Промышленная сеть — сеть передачи данных, связывающая различные датчики, исполнительные механизмы, промышленные контроллеры и используемая в промышленной автоматизации. Термин употребляется преимущественно в автоматизированной системе управления технологическими процессами (АСУТП).

    Устройства используют сеть для:

    • передачи данных, между датчиками, контроллерами и исполнительными механизмами;
    • диагностики и удалённого конфигурирования датчиков и исполнительных механизмов;
    • калибрования датчиков;
    • питания датчиков и исполнительных механизмов;
    • связи между датчиками, исполнительными механизмами, ПЛК и АСУ ТП верхнего уровня.

    В промышленных сетях для передачи данных применяют:

    • электрические линии;
    • волоконно-оптические линии;
    • беспроводную связь (радиомодемы и Wi-Fi).

    Промышленные сети могут взаимодействовать с обычными компьютерными сетями, в частности использовать глобальную сеть Internet.

    [ Википедия]


    Главной функцией полевой шины является обеспечение сетевого взаимодействия между контроллерами и удаленной периферией (например, узлами ввода/вывода). Помимо этого, к полевой шине могут подключаться различные контрольно-измерительные приборы ( Field Devices), снабженные соответствующими сетевыми интерфейсами. Такие устройства часто называют интеллектуальными ( Intelligent Field Devices), так как они поддерживают высокоуровневые протоколы сетевого обмена.

    Пример полевой шины представлен на рисунке 1.

    4911
    Рис. 1. Полевая шина.

    Как уже было отмечено, существует множество стандартов полевых шин, наиболее распространенные из которых приведены ниже:

    1. Profibus DP
    2. Profibus PA
    3. Foundation Fieldbus
    4. Modbus RTU
    5. HART
    6. DeviceNet

    Несмотря на нюансы реализации каждого из стандартов (скорость передачи данных, формат кадра, физическая среда), у них есть одна общая черта – используемый алгоритм сетевого обмена данными, основанный на классическом принципе Master-Slave или его небольших модификациях.
    Современные полевые шины удовлетворяют строгим техническим требованиям, благодаря чему становится возможной их эксплуатация в тяжелых промышленных условиях. К этим требованиям относятся:

    1. Детерминированность. Под этим подразумевается, что передача сообщения из одного узла сети в другой занимает строго фиксированный отрезок времени. Офисные сети, построенные по технологии Ethernet, - это отличный пример недетерминированной сети. Сам алгоритм доступа к разделяемой среде по методу CSMA/CD не определяет время, за которое кадр из одного узла сети будет передан другому, и, строго говоря, нет никаких гарантий, что кадр вообще дойдет до адресата. Для промышленных сетей это недопустимо. Время передачи сообщения должно быть ограничено и в общем случае, с учетом количества узлов, скорости передачи данных и длины сообщений, может быть заранее рассчитано.
    2. Поддержка больших расстояний. Это существенное требование, ведь расстояние между объектами управления может порой достигать нескольких километров. Применяемый протокол должен быть ориентирован на использование в сетях большой протяженности.
    3. Защита от электромагнитных наводок. Длинные линии в особенности подвержены пагубному влиянию электромагнитных помех, излучаемых различными электрическими агрегатами. Сильные помехи в линии могут исказить передаваемые данные до неузнаваемости. Для защиты от таких помех применяют специальные экранированные кабели, а также оптоволокно, которое, в силу световой природы информационного сигнала, вообще нечувствительно к электромагнитным наводкам. Кроме этого, в промышленных сетях должны использоваться специальные методы цифрового кодирования данных, препятствующие их искажению в процессе передачи или, по крайней мере, позволяющие эффективно детектировать искаженные данные принимающим узлом.
    4. Упрочненная механическая конструкция кабелей и соединителей. Здесь тоже нет ничего удивительного, если представить, в каких условиях зачастую приходиться прокладывать коммуникационные линии. Кабели и соединители должны быть прочными, долговечными и приспособленными для использования в самых тяжелых окружающих условиях (в том числе агрессивных атмосферах).

    По типу физической среды полевые шины делятся на два типа:

    1. Полевые шины, построенные на базе оптоволоконного кабеля.
      Преимущества использования оптоволокна очевидны: возможность построения протяженных коммуникационных линий (протяженностью до 10 км и более); большая полоса пропускания; иммунитет к электромагнитным помехам; возможность прокладки во взрывоопасных зонах.
      Недостатки: относительно высокая стоимость кабеля; сложность физического подключения и соединения кабелей. Эти работы должны выполняться квалифицированными специалистами.
    2. Полевые шины, построенные на базе медного кабеля.
      Как правило, это двухпроводной кабель типа “витая пара” со специальной изоляцией и экранированием. Преимущества: удобоваримая цена; легкость прокладки и выполнения физических соединений. Недостатки: подвержен влиянию электромагнитных наводок; ограниченная протяженность кабельных линий; меньшая по сравнению с оптоволокном полоса пропускания.

    Итак, перейдем к рассмотрению методов обеспечения отказоустойчивости коммуникационных сетей, применяемых на полевом уровне. При проектировании и реализации этот аспект становится ключевым, так как в большой степени определяет характеристики надежности всей системы управления в целом.

    На рисунке 2 изображена базовая архитектура полевой шины – одиночная (нерезервированная). Шина связывает контроллер С1 и четыре узла ввода/вывода IO1-IO4. Очевидно, что такая архитектура наименее отказоустойчива, так как обрыв шины, в зависимости от его локализации, ведет к потере коммуникации с одним, несколькими или всеми узлами шины. В нашем случае в результате обрыва теряется связь с двумя узлами.

    4912
    Рис. 2. Нерезервированная шина.

    Здесь важное значение имеет термин “единичная точка отказа” (SPOF, single point of failure). Под этим понимается место в системе, отказ компонента или обрыв связи в котором приводит к нарушению работы всей системы. На рисунке 2 единичная точка отказа обозначена красным крестиком.

    На рисунке 3 показана конфигурация в виде дублированной полевой шины, связывающей резервированный контроллер с узлами ввода/вывода. Каждый узел ввода/вывода снабжен двумя интерфейсными модулями. Если не считать сами модули ввода/вывода, которые резервируются редко, в данной конфигурации единичной точки отказа нет.

    4913
    Рис. 3. Резервированная шина.

    Вообще, при построении отказоустойчивых АСУ ТП стараются, чтобы единичный отказ в любом компоненте (линии связи) не влиял на работу всей системы. В этом плане конфигурация в виде дублированной полевой шины является наиболее распространенным техническим решением.

    На рисунке 4 показана конфигурация в виде оптоволоконного кольца. Контроллер и узлы ввода/вывода подключены к кольцу с помощью резервированных медных сегментов. Для состыковки медных сегментов сети с оптоволоконными применяются специальные конверторы среды передачи данных “медь<->оптоволокно” (OLM, Optical Link Module). Для каждого из стандартных протоколов можно выбрать соответствующий OLM.

    4914
    Рис. 4. Одинарное оптоволоконное кольцо.

    Как и дублированная шина, оптоволоконное кольцо устойчиво к возникновению одного обрыва в любом его месте. Система такой обрыв вообще не заметит, и переключение на резервные интерфейсные и коммуникационные модули не произойдет. Более того, обрыв одного из двух медных сегментов, соединяющих узел с оптоволоконным кольцом, не приведет к потере связи с этим узлом. Однако второй обрыв кольца может привести к неработоспособности системы. В общем случае два обрыва кольца в диаметрально противоположных точках ведут к потере коммуникации с половиной подключенных узлов.

    На рисунке 5 изображена конфигурация с двойным оптическим кольцом. В случае если в результате образования двух точек обрыва первичное кольцо выходит из строя, система переключается на вторичное кольцо. Очевидно, что такая архитектура сети является наиболее отказоустойчивой. На рисунке 5 пошагово изображен процесс деградации сети. Обратите внимание, сколько отказов система может перенести до того, как выйдет из строя.

    4915
    Рис. 5. Резервированное оптоволоконное кольцо.

    [ http://kazanets.narod.ru/NT_PART1.htm]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > field bus

  • 14 fieldbus

    1. полевая шина

     

    полевая шина
    -
    [Интент]

    полевая магистраль по зарубежной терминологии
    Имеет много терминов-синонимов и обозначает специализированные последовательные магистрали малых локальных сетей (МЛС), ориентированны на сопряжение с ЭВМ рассредоточенных цифровых датчиков и исполнительных органов. Магистрали рассчитаны на применение в машиностроении, химической промышленности, в системах автоматизации зданий, крупных установках, бытовых электронных системах, системах автомобильного оборудования, малых контрольно-измерительных и управляющих системах на основе встраиваемых микроЭВМ и т. п. Основными магистралями являются Bitbus, MIL STD-1553В. В настоящее время рабочими группами IEC (65С и SP-50) стандартизируются два основных типа МЛС: высокоскоростные и низкоскоростные, ориентированные на датчики.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    ЧТО ТАКОЕ FIELDВUS?
    Так пишется оригинальный термин, который в русском переводе звучит как «промышленная сеть». Fieldbus — это не какой-то определенный протокол передачи данных и не тип сетевой архитектуры, этот термин не принадлежит ни одной отдельно взятой компании и обозначает скорее сферу применения, чем какую-либо конкретную сетевую технологию.
    Давайте попробуем сформулировать лишь некоторые основные требования, которые можно предъявить к «идеальной» промышленной сети.
    1. Производительность.
    2. Предсказуемость времени доставки информации.
    3. Помехоустойчивость.
    4. Доступность и простота организации физического канала передачи данных.
    5. Максимальный сервис для приложений верхнего уровня.
    6. Минимальная стоимость устройств аппаратной реализации, особенно на уровне контроллеров.
    7. Возможность получения «распределенного интеллекта», путем предоставления максимального доступа к каналу нескольким ведущим узлам.
    8.Управляемость и самовосстановление в случае возникновения нештатных ситуаций.

    [Сергей Гусев. Краткий экскурс в историю промышленных сетей]


    Международный стандарт IEC 61158 “Fieldbus for use in Industrial Control Systems” («Промышленная управляющая сеть для применения в промышленных системах управления») определяет восемь независимых и несовместимых коммуникационных технологий, из которых FOUNDATION Fieldbus H1 и PROFIBUS PA стали в значительной степени преобладающими в различных отраслях промышленности.
    Эти промышленные сети соответствуют требованиям стандарта IEC 61158 2, который устанавливает физический уровень так называемых промышленных сетей H1.
    Основными требованиями к промышленным сетям H1 являются:
    ● передача данных и питание устройств нижнего уровня по одной витой паре;
    ● гибкость при проектировании различных топологий сети;
    ● совместимость всех полевых приборов;
    ● взрывобезопасность при установкево взрывоопасных зонах;
    ● распределение одной инфраструктуры на многочисленные сегменты.

    [Виктор Жданкин. Концепция FieldConnex® для промышленных сетей FOUNDATION Fieldbus H1 и PROFIBUS_PA: повышение производительности и снижение затрат. СТА 2/2009]


    Термин полевая шина является дословным переводом английского термина fieldbus.
    Термин промышленная сеть является более точным переводом и в настоящее время именно он используется в профессиональной технической литературе.

    Промышленная сеть — сеть передачи данных, связывающая различные датчики, исполнительные механизмы, промышленные контроллеры и используемая в промышленной автоматизации. Термин употребляется преимущественно в автоматизированной системе управления технологическими процессами (АСУТП).

    Устройства используют сеть для:

    • передачи данных, между датчиками, контроллерами и исполнительными механизмами;
    • диагностики и удалённого конфигурирования датчиков и исполнительных механизмов;
    • калибрования датчиков;
    • питания датчиков и исполнительных механизмов;
    • связи между датчиками, исполнительными механизмами, ПЛК и АСУ ТП верхнего уровня.

    В промышленных сетях для передачи данных применяют:

    • электрические линии;
    • волоконно-оптические линии;
    • беспроводную связь (радиомодемы и Wi-Fi).

    Промышленные сети могут взаимодействовать с обычными компьютерными сетями, в частности использовать глобальную сеть Internet.

    [ Википедия]


    Главной функцией полевой шины является обеспечение сетевого взаимодействия между контроллерами и удаленной периферией (например, узлами ввода/вывода). Помимо этого, к полевой шине могут подключаться различные контрольно-измерительные приборы ( Field Devices), снабженные соответствующими сетевыми интерфейсами. Такие устройства часто называют интеллектуальными ( Intelligent Field Devices), так как они поддерживают высокоуровневые протоколы сетевого обмена.

    Пример полевой шины представлен на рисунке 1.

    4911
    Рис. 1. Полевая шина.

    Как уже было отмечено, существует множество стандартов полевых шин, наиболее распространенные из которых приведены ниже:

    1. Profibus DP
    2. Profibus PA
    3. Foundation Fieldbus
    4. Modbus RTU
    5. HART
    6. DeviceNet

    Несмотря на нюансы реализации каждого из стандартов (скорость передачи данных, формат кадра, физическая среда), у них есть одна общая черта – используемый алгоритм сетевого обмена данными, основанный на классическом принципе Master-Slave или его небольших модификациях.
    Современные полевые шины удовлетворяют строгим техническим требованиям, благодаря чему становится возможной их эксплуатация в тяжелых промышленных условиях. К этим требованиям относятся:

    1. Детерминированность. Под этим подразумевается, что передача сообщения из одного узла сети в другой занимает строго фиксированный отрезок времени. Офисные сети, построенные по технологии Ethernet, - это отличный пример недетерминированной сети. Сам алгоритм доступа к разделяемой среде по методу CSMA/CD не определяет время, за которое кадр из одного узла сети будет передан другому, и, строго говоря, нет никаких гарантий, что кадр вообще дойдет до адресата. Для промышленных сетей это недопустимо. Время передачи сообщения должно быть ограничено и в общем случае, с учетом количества узлов, скорости передачи данных и длины сообщений, может быть заранее рассчитано.
    2. Поддержка больших расстояний. Это существенное требование, ведь расстояние между объектами управления может порой достигать нескольких километров. Применяемый протокол должен быть ориентирован на использование в сетях большой протяженности.
    3. Защита от электромагнитных наводок. Длинные линии в особенности подвержены пагубному влиянию электромагнитных помех, излучаемых различными электрическими агрегатами. Сильные помехи в линии могут исказить передаваемые данные до неузнаваемости. Для защиты от таких помех применяют специальные экранированные кабели, а также оптоволокно, которое, в силу световой природы информационного сигнала, вообще нечувствительно к электромагнитным наводкам. Кроме этого, в промышленных сетях должны использоваться специальные методы цифрового кодирования данных, препятствующие их искажению в процессе передачи или, по крайней мере, позволяющие эффективно детектировать искаженные данные принимающим узлом.
    4. Упрочненная механическая конструкция кабелей и соединителей. Здесь тоже нет ничего удивительного, если представить, в каких условиях зачастую приходиться прокладывать коммуникационные линии. Кабели и соединители должны быть прочными, долговечными и приспособленными для использования в самых тяжелых окружающих условиях (в том числе агрессивных атмосферах).

    По типу физической среды полевые шины делятся на два типа:

    1. Полевые шины, построенные на базе оптоволоконного кабеля.
      Преимущества использования оптоволокна очевидны: возможность построения протяженных коммуникационных линий (протяженностью до 10 км и более); большая полоса пропускания; иммунитет к электромагнитным помехам; возможность прокладки во взрывоопасных зонах.
      Недостатки: относительно высокая стоимость кабеля; сложность физического подключения и соединения кабелей. Эти работы должны выполняться квалифицированными специалистами.
    2. Полевые шины, построенные на базе медного кабеля.
      Как правило, это двухпроводной кабель типа “витая пара” со специальной изоляцией и экранированием. Преимущества: удобоваримая цена; легкость прокладки и выполнения физических соединений. Недостатки: подвержен влиянию электромагнитных наводок; ограниченная протяженность кабельных линий; меньшая по сравнению с оптоволокном полоса пропускания.

    Итак, перейдем к рассмотрению методов обеспечения отказоустойчивости коммуникационных сетей, применяемых на полевом уровне. При проектировании и реализации этот аспект становится ключевым, так как в большой степени определяет характеристики надежности всей системы управления в целом.

    На рисунке 2 изображена базовая архитектура полевой шины – одиночная (нерезервированная). Шина связывает контроллер С1 и четыре узла ввода/вывода IO1-IO4. Очевидно, что такая архитектура наименее отказоустойчива, так как обрыв шины, в зависимости от его локализации, ведет к потере коммуникации с одним, несколькими или всеми узлами шины. В нашем случае в результате обрыва теряется связь с двумя узлами.

    4912
    Рис. 2. Нерезервированная шина.

    Здесь важное значение имеет термин “единичная точка отказа” (SPOF, single point of failure). Под этим понимается место в системе, отказ компонента или обрыв связи в котором приводит к нарушению работы всей системы. На рисунке 2 единичная точка отказа обозначена красным крестиком.

    На рисунке 3 показана конфигурация в виде дублированной полевой шины, связывающей резервированный контроллер с узлами ввода/вывода. Каждый узел ввода/вывода снабжен двумя интерфейсными модулями. Если не считать сами модули ввода/вывода, которые резервируются редко, в данной конфигурации единичной точки отказа нет.

    4913
    Рис. 3. Резервированная шина.

    Вообще, при построении отказоустойчивых АСУ ТП стараются, чтобы единичный отказ в любом компоненте (линии связи) не влиял на работу всей системы. В этом плане конфигурация в виде дублированной полевой шины является наиболее распространенным техническим решением.

    На рисунке 4 показана конфигурация в виде оптоволоконного кольца. Контроллер и узлы ввода/вывода подключены к кольцу с помощью резервированных медных сегментов. Для состыковки медных сегментов сети с оптоволоконными применяются специальные конверторы среды передачи данных “медь<->оптоволокно” (OLM, Optical Link Module). Для каждого из стандартных протоколов можно выбрать соответствующий OLM.

    4914
    Рис. 4. Одинарное оптоволоконное кольцо.

    Как и дублированная шина, оптоволоконное кольцо устойчиво к возникновению одного обрыва в любом его месте. Система такой обрыв вообще не заметит, и переключение на резервные интерфейсные и коммуникационные модули не произойдет. Более того, обрыв одного из двух медных сегментов, соединяющих узел с оптоволоконным кольцом, не приведет к потере связи с этим узлом. Однако второй обрыв кольца может привести к неработоспособности системы. В общем случае два обрыва кольца в диаметрально противоположных точках ведут к потере коммуникации с половиной подключенных узлов.

    На рисунке 5 изображена конфигурация с двойным оптическим кольцом. В случае если в результате образования двух точек обрыва первичное кольцо выходит из строя, система переключается на вторичное кольцо. Очевидно, что такая архитектура сети является наиболее отказоустойчивой. На рисунке 5 пошагово изображен процесс деградации сети. Обратите внимание, сколько отказов система может перенести до того, как выйдет из строя.

    4915
    Рис. 5. Резервированное оптоволоконное кольцо.

    [ http://kazanets.narod.ru/NT_PART1.htm]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > fieldbus

  • 15 costs

    сущ. затраты, издержки, расходы Syn: outgo, outgoing, outlay, expenses Затраты accounting ~ затраты на ведение бухгалтерского учета acquisition ~ расходы на привлечение новых страхователей actual ~ фактические издержки adjustment ~ издержки регулирования administration ~ административные расходы administrative ~ административные расходы advertising ~ затраты на рекламу allocate ~ распределять затраты assign ~ распределять затраты at factor ~ при факторных издержках auditing ~ затраты на проведение ревизии average ~ средние издержки average fixed ~ средние постоянные издержки average production ~ средние издержки производства average total ~ средние валовые затраты average variable ~ средние переменные затраты average variable ~ средние переменные издержки avoidable ~ устранимые издержки award ~ присуждать судебные издержки betterment ~ затраты на повышение ценности собственности bookkeeping ~ затраты на ведение бухгалтерского учета borrowing ~ проценты по займам borrowing ~ расходы по займам brokerage ~ затраты на куртаж budget ~ бюджетные затраты budgeted current standard ~ сметные текущие нормативные издержки budgeted target ~ плановые сметные издержки building ~ затраты на строительство building maintenance ~ затраты на материально-техническое обеспечение строительства business ~ эксплуатационные расходы calculate ~ вычислять издержки calculated ~ вычисленные издержки capacity ~ издержки производства при полном использовании производственных возможностей carriage ~ транспортные расходы cash plant ~ производственные затраты наличными charge with ~ взыскивать издержки clearance ~ затраты на урегулирование претензий closing ~ затраты на аннулирование контракта collection ~ затраты на инкассирование construction and operating ~ затраты на строительство и эксплуатацию construction ~ затраты на строительство conversion ~ затраты, связанные с переходом на выпуск новой продукции costs издержки ~ расходы ~ судебные издержки ~ судебные расходы ~ in criminal case издержки ведения уголовного дела ~ in full полные издержки ~ of bankruptcy издержки банкротства ~ of completion затраты на выполнение работы ~ of discharge затраты на разгрузку ~ of forward cover бирж. затраты на срочное покрытие ~ of litigation издержки гражданского судебного спора ~ of management административные расходы ~ of queue вчт. потери вследствие ожидания в очереди ~ of recourse юр. затраты на регресс ~ of research and development затраты на научно-исследовательские и опытно-конструкторские работы current ~ текущие издержки decision as to ~ определение суда в отношении издержек deduct ~ удерживать затраты defray ~ нести расходы defray ~ покрывать издержки degressive ~ пропорционально уменьшающиеся затраты degressive ~ пропорционально уменьшающиеся расходы demolition ~ затраты на снос здания development ~ затраты на освоение development ~ затраты на строительство differential ~ дополнительные издержки differential ~ приростные издержки differential ~ удельные переменные издержки direct ~ непосредственные расходы direct ~ переменные затраты direct ~ переменные издержки direct ~ прямые затраты direct ~ прямые издержки discounting ~ издержки дисконтирования distribute ~ распределять затраты distribution ~ издержки обращения distribution ~ издержки сбыта продукции distribution ~ издержки торговых предприятий divorce ~ судебные издержки развода drainage ~ расходы на осушение election ~ затраты на проведение выборов employment ~ затраты на содержание персонала entertainment ~ представительские расходы establishment ~ учредительские расходы excess ~ чрезмерные расходы execution ~ расходы на исполнение extension ~ затраты на расширение предприятия external ~ внешние расходы extra ~ дополнительные расходы extraordinary ~ чрезвычайные расходы factory overhead ~ накладные расходы предприятия financing ~ затраты на финансирование fire extinguishing ~ затраты на тушение пожара fixed ~ постоянные затраты fixed ~ постоянные издержки flotation ~ стоимость выпуска новых акций flotation ~ стоимость выпуска новых облигаций formation ~ затраты на учреждение forward cover ~ бирж. затраты на срочное покрытие forward cover ~ бирж. затраты на форвардное покрытие freight ~ стоимость фрахта funeral ~ расходы на похороны general ~ общие затраты general ~ общие издержки gross ~ валовые издержки handling ~ стоимость погрузочно-разгрузочных работ hauling ~ транс. транспортные расходы hourly wage ~ эк.произ. затраты на почасовую заработную плату implicit ~ вмененные издержки incidental ~ побочные затраты incidental ~ случайные расходы included ~ учтенные расходы income-related ~ затраты, связанные с доходом increased ~ возросшие издержки incremental ~ дополнительные издержки incremental ~ приростные издержки indirect ~ косвенные издержки indirect operating ~ косвенные эксплуатационные издержки initial ~ начальные расходы initial ~ первоначальные издержки inspection ~ затраты на приемочный контроль installation ~ затраты на монтаж insurance ~ страховые издержки interest ~ затраты на выплату процентов internal ~ внутрифирменние издержки internal failure ~ внутренние издержки вследствие отказа issue ~ затраты на эмиссию issuing ~ затраты на выпуск ценных бумаг joint ~ затраты на транспортировку в оба конца joint ~ издержки комплексного производства joint ~ издержки совместного производства joint ~ общезаводские издержки при многономенклатурном производстве labour ~ затраты на оплату труда labour ~ расходы на рабочую силу labour ~ стоимость рабочей силы law ~ расходы на судебный процесс law ~ судебные издержки legal ~ судебные издержки licence ~ затраты на лицензию liquidation ~ стоимость ликвидации litigation ~ судебные издержки maintenance ~ стоимость технического обслуживания manpower ~ стоимость рабочей силы manufacturing ~ общезаводские накладные расходы manufacturing ~ стоимость производства marginal ~ маржинальные издержки marginal ~ предельные издержки marginal ~ приростные издержки marketing ~ издержки обращения marketing ~ издержки сбыта marketing ~ маркетинговые затраты meet ~ покрывать расходы minimum ~ минимальные затраты mixed ~ комбинированные затраты mortgaging ~ ипотечные издержки new business ~ затраты на новую фирму nonrecurring ~ разовые затраты once-and-for-all ~ разовые затраты operating ~ текущие расходы, эксплуатационные расходы operating ~ эксплуатационные затраты operating ~ вчт. эксплуатационные расходы operating: ~ текущий;
    operating costs текущие расходы;
    эксплуатационные расходы operational ~ эксплуатационные затраты operational: ~ относящийся к действию, работе;
    operational costs расходы по эксплуатации( оборудования и т. п.) organization ~ административные расходы original ~ первоначальные издержки other indirect ~ прочие косвенные расходы packaging ~ затраты на упаковку packaging ~ расходы по упаковке packing ~ расходы на упаковку packing ~ стоимость упаковки pay ~ оплачивать издержки pension ~ затраты на пенсионное обеспечение period ~ затраты за отчетный период period ~ издержки за отчетный период plaintiff's ~ издержки истца port ~ портовые расходы preliminary ~ предварительные затраты prepaid ~ предварительно оплаченные расходы prime ~ основные расходы processing ~ вчт. затраты на обработку production ~ издержки производства progressive ~ затраты, способствующие росту эффективности производственных факторов progressive fixed ~ постоянные затраты, способствующие росту эффективности производственных факторов promotional ~ затраты на продвижение товара на рынок promotional ~ затраты на рекламно-пропагандистскую деятельность property development ~ стоимость строительных работ publicity ~ расходы на рекламу rebuilding ~ затраты на реконструкцию recovery ~ затраты на инкасацию reduce ~ сокращать затраты relocation ~ затраты на переезд removal ~ издержки ликвидации объекта основного капитала rent ~ затраты на арендную плату rent ~ затраты на квартирную плату reorganization ~ затраты на реорганизацию repair ~ затраты на ремонт repatriation ~ затраты на репатриацию research ~ затраты на научные исследования reserve ~ ограничивать расходы running ~ эксплуатационные расходы running-in ~ затраты на приработку sales promotion ~ затраты на стимулирование сбыта scheduled ~ нормативные издержки scheduled ~ стоимостные нормы selling ~ торговые издержки semivariable ~ полупеременные издержки share ~ распределять затраты shipping ~ затраты на транспортировку site ~ затраты на подготовку строительной площадки site ~ затраты на подготовку строительства site ~ затраты на подготовку участка к застройке social ~ общественные затраты social security ~ затраты на социальное обеспечение sorting ~ затраты на сортировку special ~ специальные затраты specified ~ издержки производства конкретных изделий staff ~ затраты на содержание персонала stamp ~ затраты на пломбирование stamp ~ затраты на штемпелевание start-up ~ затраты на ввод в действие start-up ~ затраты на запуск в производство start-up ~ издержки освоения нового предприятия start-up ~ издержки подготовки производства starting ~ затраты, связанные с пуском производства starting ~ издержки, связанные с пуском производства stevedoring ~ стоимость погрузки или разгрузки корабля storage ~ плата за хранение storage ~ складские расходы stowage ~ стоимость укладки или хранения на складе supplementary ~ дополнительные затраты tax the ~ таксировать судебные издержки total ~ общие издержки total production ~ суммарные издержки производства transaction ~ операционные издержки transport ~ транспортные расходы transportation ~ транспортные расходы undue ~ непросроченные издержки unforeseen ~ непредвиденные затраты wage ~ затраты на заработную плату with ~ вместе с судебными издержками working ~ эксплуатационные затраты works overhead ~ накладные расходы предприятия

    Большой англо-русский и русско-английский словарь > costs

  • 16 costs

    accounting costs затраты на ведение бухгалтерского учета acquisition costs расходы на привлечение новых страхователей actual costs фактические издержки adjustment costs издержки регулирования administration costs административные расходы administrative costs административные расходы advertising costs затраты на рекламу allocate costs распределять затраты assign costs распределять затраты at factor costs при факторных издержках auditing costs затраты на проведение ревизии average costs средние издержки average fixed costs средние постоянные издержки average production costs средние издержки производства average total costs средние валовые затраты average variable costs средние переменные затраты average variable costs средние переменные издержки avoidable costs устранимые издержки award costs присуждать судебные издержки betterment costs затраты на повышение ценности собственности bookkeeping costs затраты на ведение бухгалтерского учета borrowing costs проценты по займам borrowing costs расходы по займам brokerage costs затраты на куртаж budget costs бюджетные затраты budgeted current standard costs сметные текущие нормативные издержки budgeted target costs плановые сметные издержки building costs затраты на строительство building maintenance costs затраты на материально-техническое обеспечение строительства business costs эксплуатационные расходы calculate costs вычислять издержки calculated costs вычисленные издержки capacity costs издержки производства при полном использовании производственных возможностей carriage costs транспортные расходы cash plant costs производственные затраты наличными charge with costs взыскивать издержки clearance costs затраты на урегулирование претензий closing costs затраты на аннулирование контракта collection costs затраты на инкассирование construction and operating costs затраты на строительство и эксплуатацию construction costs затраты на строительство conversion costs затраты, связанные с переходом на выпуск новой продукции costs издержки costs расходы costs судебные издержки costs судебные расходы costs in criminal case издержки ведения уголовного дела costs in full полные издержки costs of bankruptcy издержки банкротства costs of completion затраты на выполнение работы costs of discharge затраты на разгрузку costs of forward cover бирж. затраты на срочное покрытие costs of litigation издержки гражданского судебного спора costs of management административные расходы costs of queue вчт. потери вследствие ожидания в очереди costs of recourse юр. затраты на регресс costs of research and development затраты на научно-исследовательские и опытно-конструкторские работы current costs текущие издержки decision as to costs определение суда в отношении издержек deduct costs удерживать затраты defray costs нести расходы defray costs покрывать издержки degressive costs пропорционально уменьшающиеся затраты degressive costs пропорционально уменьшающиеся расходы demolition costs затраты на снос здания development costs затраты на освоение development costs затраты на строительство differential costs дополнительные издержки differential costs приростные издержки differential costs удельные переменные издержки direct costs непосредственные расходы direct costs переменные затраты direct costs переменные издержки direct costs прямые затраты direct costs прямые издержки discounting costs издержки дисконтирования distribute costs распределять затраты distribution costs издержки обращения distribution costs издержки сбыта продукции distribution costs издержки торговых предприятий divorce costs судебные издержки развода drainage costs расходы на осушение election costs затраты на проведение выборов employment costs затраты на содержание персонала entertainment costs представительские расходы establishment costs учредительские расходы excess costs чрезмерные расходы execution costs расходы на исполнение extension costs затраты на расширение предприятия external costs внешние расходы extra costs дополнительные расходы extraordinary costs чрезвычайные расходы factory overhead costs накладные расходы предприятия financing costs затраты на финансирование fire extinguishing costs затраты на тушение пожара fixed costs постоянные затраты fixed costs постоянные издержки flotation costs стоимость выпуска новых акций flotation costs стоимость выпуска новых облигаций formation costs затраты на учреждение forward cover costs бирж. затраты на срочное покрытие forward cover costs бирж. затраты на форвардное покрытие freight costs стоимость фрахта funeral costs расходы на похороны general costs общие затраты general costs общие издержки gross costs валовые издержки handling costs стоимость погрузочно-разгрузочных работ hauling costs транс. транспортные расходы hourly wage costs эк.произ. затраты на почасовую заработную плату implicit costs вмененные издержки incidental costs побочные затраты incidental costs случайные расходы included costs учтенные расходы income-related costs затраты, связанные с доходом increased costs возросшие издержки incremental costs дополнительные издержки incremental costs приростные издержки indirect costs косвенные издержки indirect operating costs косвенные эксплуатационные издержки initial costs начальные расходы initial costs первоначальные издержки inspection costs затраты на приемочный контроль installation costs затраты на монтаж insurance costs страховые издержки interest costs затраты на выплату процентов internal costs внутрифирменние издержки internal failure costs внутренние издержки вследствие отказа issue costs затраты на эмиссию issuing costs затраты на выпуск ценных бумаг joint costs затраты на транспортировку в оба конца joint costs издержки комплексного производства joint costs издержки совместного производства joint costs общезаводские издержки при многономенклатурном производстве labour costs затраты на оплату труда labour costs расходы на рабочую силу labour costs стоимость рабочей силы law costs расходы на судебный процесс law costs судебные издержки legal costs судебные издержки licence costs затраты на лицензию liquidation costs стоимость ликвидации litigation costs судебные издержки maintenance costs стоимость технического обслуживания manpower costs стоимость рабочей силы manufacturing costs общезаводские накладные расходы manufacturing costs стоимость производства marginal costs маржинальные издержки marginal costs предельные издержки marginal costs приростные издержки marketing costs издержки обращения marketing costs издержки сбыта marketing costs маркетинговые затраты meet costs покрывать расходы minimum costs минимальные затраты mixed costs комбинированные затраты mortgaging costs ипотечные издержки new business costs затраты на новую фирму nonrecurring costs разовые затраты once-and-for-all costs разовые затраты operating costs текущие расходы, эксплуатационные расходы operating costs эксплуатационные затраты operating costs вчт. эксплуатационные расходы operating: costs текущий; operating costs текущие расходы; эксплуатационные расходы operational costs эксплуатационные затраты operational: costs относящийся к действию, работе; operational costs расходы по эксплуатации (оборудования и т. п.) organization costs административные расходы original costs первоначальные издержки other indirect costs прочие косвенные расходы packaging costs затраты на упаковку packaging costs расходы по упаковке packing costs расходы на упаковку packing costs стоимость упаковки pay costs оплачивать издержки pension costs затраты на пенсионное обеспечение period costs затраты за отчетный период period costs издержки за отчетный период plaintiff's costs издержки истца port costs портовые расходы preliminary costs предварительные затраты prepaid costs предварительно оплаченные расходы prime costs основные расходы processing costs вчт. затраты на обработку production costs издержки производства progressive costs затраты, способствующие росту эффективности производственных факторов progressive fixed costs постоянные затраты, способствующие росту эффективности производственных факторов promotional costs затраты на продвижение товара на рынок promotional costs затраты на рекламно-пропагандистскую деятельность property development costs стоимость строительных работ publicity costs расходы на рекламу rebuilding costs затраты на реконструкцию recovery costs затраты на инкасацию reduce costs сокращать затраты relocation costs затраты на переезд removal costs издержки ликвидации объекта основного капитала rent costs затраты на арендную плату rent costs затраты на квартирную плату reorganization costs затраты на реорганизацию repair costs затраты на ремонт repatriation costs затраты на репатриацию research costs затраты на научные исследования reserve costs ограничивать расходы running costs эксплуатационные расходы running-in costs затраты на приработку sales promotion costs затраты на стимулирование сбыта scheduled costs нормативные издержки scheduled costs стоимостные нормы selling costs торговые издержки semivariable costs полупеременные издержки share costs распределять затраты shipping costs затраты на транспортировку site costs затраты на подготовку строительной площадки site costs затраты на подготовку строительства site costs затраты на подготовку участка к застройке social costs общественные затраты social security costs затраты на социальное обеспечение sorting costs затраты на сортировку special costs специальные затраты specified costs издержки производства конкретных изделий staff costs затраты на содержание персонала stamp costs затраты на пломбирование stamp costs затраты на штемпелевание start-up costs затраты на ввод в действие start-up costs затраты на запуск в производство start-up costs издержки освоения нового предприятия start-up costs издержки подготовки производства starting costs затраты, связанные с пуском производства starting costs издержки, связанные с пуском производства stevedoring costs стоимость погрузки или разгрузки корабля storage costs плата за хранение storage costs складские расходы stowage costs стоимость укладки или хранения на складе supplementary costs дополнительные затраты tax the costs таксировать судебные издержки total costs общие издержки total production costs суммарные издержки производства transaction costs операционные издержки transport costs транспортные расходы transportation costs транспортные расходы undue costs непросроченные издержки unforeseen costs непредвиденные затраты wage costs затраты на заработную плату with costs вместе с судебными издержками working costs эксплуатационные затраты works overhead costs накладные расходы предприятия

    English-Russian short dictionary > costs

  • 17 the

    abandon the takeoff
    прекращать взлет
    abeam the left pilot position
    на левом траверзе
    abeam the right pilot position
    на правом траверзе
    abort the flight
    прерывать полет
    abort the takeoff
    прерывать взлет
    above the glide slope
    выше глиссады
    absorb the shock energy
    поглощать энергию удара
    accelerate the rotor
    раскручивать ротор
    accelerate to the speed
    разгонять до скорости
    adhere to the flight plan
    придерживаться плана полета
    adhere to the track
    придерживаться заданного курса
    adjust the cable
    регулировать трос
    adjust the compass
    устранять девиацию компаса
    adjust the engine
    регулировать двигатель до заданных параметров
    adjust the heading
    корректировать курс
    advice to follow the controller's advance
    выполнять указание диспетчера
    affect the regularity
    влиять на регулярность
    affect the safety
    влиять на безопасность
    align the aircraft
    устанавливать воздушное судно
    align the aircraft with the center line
    устанавливать воздушное судно по оси
    align the aircraft with the runway
    устанавливать воздушное судно по оси ВПП
    alter the heading
    менять курс
    amplify the signal
    усиливать сигнал
    apparent drift of the gyro
    кажущийся уход гироскопа
    apply the brake
    применять тормоз
    approach the beam
    приближаться к лучу
    approve the limitations
    утверждать ограничения
    approve the tariff
    утверждать тариф
    area of coverage of the forecasts
    район обеспечения прогнозами
    arrest the development of the stall
    препятствовать сваливанию
    arrive over the aerodrome
    прибывать в зону аэродрома
    assess the damage
    определять стоимость повреждения
    assess the distance
    оценивать расстояние
    assess the suitability
    оценивать пригодность
    assume the control
    брать управление на себя
    attain the power
    достигать заданной мощности
    attain the speed
    развивать заданную скорость
    at the end of
    в конце цикла
    at the end of segment
    в конце участка
    (полета) at the end of stroke
    в конце хода
    (поршня) at the ground level
    на уровне земли
    at the start of cycle
    в начале цикла
    at the start of segment
    в начале участка
    (полета) avoid the obstacle
    избегать столкновения с препятствием
    backward movement of the stick
    взятие ручки на себя
    balance the aircraft
    балансировать воздушное судно
    balance the control surface
    балансировать поверхность управления
    balance the propeller
    балансировать воздушный винт
    bear on the accident
    иметь отношение к происшествию
    before the turbine
    перед турбиной
    below the glide slope
    ниже глиссады
    below the landing minima
    ниже посадочного минимума
    bend the cotterpin ends
    загибать усики шплинта
    be off the track
    уклоняться от заданного курса
    be on the level on the hour
    занимать эшелон по нулям
    block the brake
    ставить на тормоз
    boundary of the area
    граница зоны
    brake the propeller
    стопорить воздушный винт
    break the journey
    прерывать полет
    bring the aircraft back
    возвращать воздушное судно
    bring the aircraft out
    выводить воздушное судно из крена
    by altering the heading
    путем изменения курса
    cage the gyroscope
    арретировать гироскоп
    calibrate the compass
    списывать девиацию компаса
    calibrate the indicator
    тарировать прибор
    calibrate the system
    тарировать систему
    calibrate the tank
    тарировать бак
    cancel the drift
    парировать снос
    cancel the flight
    отменять полет
    cancel the forecast
    аннулировать сообщенный прогноз
    cancel the signal
    прекращать подачу сигнала
    capture the beam
    захватывать луч
    carry out a circuit of the aerodrome
    выполнять круг полета над аэродромом
    carry out the flight
    выполнять полет
    center the autopilot
    центрировать автопилот
    center the wiper
    центрировать щетку
    change the frequency
    изменять частоту
    change the pitch
    изменять шаг
    change the track
    изменять линию пути
    check the reading
    проверять показания
    chop the power
    внезапно изменять режим
    circle the aerodrome
    летать по кругу над аэродромом
    clean the aircraft
    убирать механизацию крыла воздушного судна
    clean up the crack
    зачищать трещину
    clearance of the aircraft
    разрешение воздушному судну
    clearance over the threshold
    безопасная высота пролета порога
    clear for the left-hand turn
    давать разрешение на левый разворот
    clear the aircraft
    давать разрешение воздушному судну
    clear the obstacle
    устранять препятствие
    clear the point
    пролетать над заданной точкой
    clear the runway
    освобождать ВПП
    climb on the course
    набирать высоту при полете по курсу
    close the buckets
    закрывать створки
    close the circuit
    замыкать цепь
    close the flight
    заканчивать регистрацию на рейс
    come clear of the ground
    отрываться от земли
    commence the flight
    начинать полет
    commence the landing procedure
    начинать посадку
    compare the readings
    сравнивать показания
    compensate the compass
    устранять девиацию компаса
    compensate the error
    списывать девиацию
    compile the accident report
    составлять отчет об авиационном происшествии
    complete the circuit
    закольцовывать
    complete the flight
    завершать полет
    complete the flight plan
    составлять план полета
    complete the turn
    завершать разворот
    compute the visual range
    вычислять дальность видимости
    conditions beyond the experience
    условия, по сложности превосходящие квалификацию пилота
    conditions on the route
    условия по заданному маршруту
    considering the obstacles
    учет препятствий
    construct the procedure
    разрабатывать схему
    containerize the cargo
    упаковывать груз в контейнере
    continue operating on the fuel reserve
    продолжать полет на аэронавигационном запасе топлива
    continue the flight
    продолжать полет
    continue the takeoff
    продолжать взлет
    contribute towards the safety
    способствовать повышению безопасности
    control the aircraft
    управлять воздушным судном
    control the pitch
    управлять шагом
    convert the frequency
    преобразовывать частоту
    convey the information
    передавать информацию
    correct the trouble
    устранять отказ
    correspond with the operating minima
    соответствовать эксплуатационному минимуму
    counteract the rotor torque
    уравновешивать крутящий момент несущего винта
    coverage of the chart
    картографируемый район
    cover the route
    пробегать по полному маршруту
    crosscheck the readings
    сверять показания
    cross the airway
    пересекать авиатрассу
    data on the performance
    координаты характеристики
    decelerate in the flight
    гасить скорость в полете
    decelerate the aircraft to
    снижать скорость воздушного судна до
    decrease the deviation
    уменьшать величину отклонения от курса
    decrease the pitch
    уменьшать шаг
    decrease the speed
    уменьшать скорость
    de-energize the bus
    обесточивать шину
    define the failure
    определять причины отказа
    deflate the tire
    ослаблять давление в пневматике
    deflect the control surface
    отклонять поверхность управления
    (напр. элерон) delay the turn
    затягивать разворот
    delimit the runway
    обозначать границы ВПП
    delimit the taxiway
    обозначать границы рулежной дорожки
    delineate the runway
    очерчивать границы ВПП
    delineate the taxiway
    обозначать размеры рулежной дорожки
    deliver the baggage
    доставлять багаж
    deliver the clearance
    передавать разрешение
    denote the obstacle
    обозначать препятствие
    denoting the obstacle
    обозначение препятствия
    depart from the rules
    отступать от установленных правил
    departure from the standards
    отклонение от установленных стандартов
    depress the pedal
    нажимать на педаль
    detach the load
    отцеплять груз
    detach the wing
    отстыковывать крыло
    determinate the cause
    устанавливать причину
    determine amount of the error
    определять величину девиации
    determine the delay
    устанавливать время задержки
    determine the extent of damage
    определять степень повреждения
    determine the friction
    определять величину сцепления
    determine the sign of deviation
    определять знак девиации
    detract from the safety
    снижать безопасность
    development of the stall
    процесс сваливания
    deviate from the flight plan
    отклоняться от плана полета
    deviate from the glide slope
    отклоняться от глиссады
    deviate from the heading
    отклоняться от заданного курса
    deviation from the course
    отклонение от заданного курса
    deviation from the level flight
    отклонение от линии горизонтального полета
    discharge the cargo
    снимать груз в контейнере
    disclose the fares
    опубликовывать тарифы
    discontinue the takeoff
    прекращать взлет
    disengage the autopilot
    выключать автопилот
    displace the center-of-gravity
    изменять центровку
    disregard the indicator
    пренебрегать показаниями прибора
    disseminate the forecast
    распространять прогноз
    drain the tank
    сливать из бака
    draw the conclusion
    подготавливать заключение
    drift off the course
    сносить с курса
    drift off the heading
    уходить с заданного курса
    drop the nose
    сваливаться на нос
    duck below the glide path
    резко снижаться относительно глиссады
    ease the aircraft on
    выравнивать воздушное судно
    effect adversely the strength
    нарушать прочность
    (напр. фюзеляжа) elevation of the strip
    превышение летной полосы
    eliminate the cause of
    устранять причину
    eliminate the hazard
    устранять опасную ситуацию
    eliminate the ice formation
    устранять обледенение
    eliminate the source of danger
    устранять источник опасности
    (для воздушного движения) enable the aircraft to
    давать воздушному судну право
    endanger the aircraft
    создавать опасность для воздушного судна
    endange the safety
    угрожать безопасности
    endorse the license
    делать отметку в свидетельстве
    energize the bus
    подавать электропитание на шину
    enforce rules of the air
    обеспечивать соблюдение правил полетов
    engage the autopilot
    включать автопилот
    ensure the adequate provisions
    обеспечивать соответствующие меры предосторожности
    enter the aircraft
    заносить воздушное судно в реестр
    enter the aircraft stand
    заруливать на место стоянки воздушного судна
    enter the airway
    выходить на авиатрассу
    enter the final approach track
    выходить на посадочную прямую
    enter the spin
    входить в штопор
    enter the tariff into force
    утверждать тарифную ставку
    enter the traffic circuit
    входить в круг движения
    enter the turn
    входить в разворот
    entry into the aerodrome zone
    вход в зону аэродрома
    entry into the flare
    входить в этап выравнивания
    erection of the gyro
    восстановление гироскопа
    establish the characteristics
    устанавливать характеристики
    establish the flight conditions
    устанавливать режим полета
    establish the procedure
    устанавливать порядок
    exceeding the stalling angle
    выход на закритический угол атаки
    exceed the stop
    преодолевать упор
    execute the manoeuvre
    выполнять маневр
    execute the turn
    выполнять разворот
    expedite the clearance
    ускорять оформление
    express the altitude
    четко указывать высоту
    extend the agreement
    продлевать срок действия соглашения
    extend the landing gear
    выпускать шасси
    extend the legs
    выпускать шасси
    extreme aft the center-of-gravity
    предельная задняя центровка
    extreme forward the center-of-gravity
    предельная передняя центровка
    eye height over the threshold
    уровень положения глаз над порогом ВПП
    fail into the spin
    срываться в штопор
    fail to follow the procedure
    не выполнять установленную схему
    fail to observe the limitations
    не соблюдать установленные ограничения
    fail to provide the manuals
    не обеспечивать соответствующими инструкциями
    fall into the spin
    срываться в штопор
    feather the propeller
    ставить воздушный винт во флюгерное положение
    file the flight plan
    регистрировать план полета
    first freedom of the air
    первая степень свободы воздуха
    flight inbound the station
    полет в направлении на станцию
    flight outbound the station
    полет в направлении от станции
    flight over the high seas
    полет над открытым морем
    flight under the rules
    полет по установленным правилам
    fly above the weather
    летать над верхней кромкой облаков
    fly at the altitude
    летать на заданной высоте
    fly into the sun
    летать против солнца
    fly into the wind
    летать против ветра
    fly on the autopilot
    летать на автопилоте
    fly on the course
    летать по курсу
    fly on the heading
    летать по курсу
    fly the aircraft
    1. управлять самолетом
    2. пилотировать воздушное судно fly the beam
    лететь по лучу
    fly the circle
    летать по кругу
    fly the glide-slope beam
    летать по глиссадному лучу
    fly the great circle
    летать по ортодромии
    fly the heading
    выполнять полет по курсу
    fly the rhumb line
    летать по локсодромии
    fly under the autopilot
    пилотировать при помощи автопилота
    fly under the supervision of
    летать под контролем
    focus the light
    фокусировать фару
    follow the beam
    выдерживать направление по лучу
    follow the glide slope
    выдерживать глиссаду
    follow up the aircraft
    сопровождать воздушное судно
    forfeit the reservation
    лишать брони
    freedom of the air
    степень свободы воздуха
    fuel the tank
    заправлять бак топливом
    fulfil the conditions
    выполнять условия
    gain the air supremacy
    завоевывать господство в воздухе
    gain the altitude
    набирать заданную высоту
    gain the glide path
    входить в глиссаду
    gain the power
    достигать заданной мощность
    gain the speed
    развивать заданную скорость
    gather the speed
    наращивать скорость
    get into the aerodrome
    приземляться на аэродроме
    get on the course
    выходить на заданный курс
    get the height
    набирать заданную высоту
    give the way
    уступать трассу
    go out of the spin
    выходить из штопора
    govern the application
    регулировать применение
    govern the flight
    управлять ходом полета
    govern the operation
    руководить эксплуатацией
    grade of the pilot licence
    класс пилотского свидетельства
    guard the frequency
    прослушивать частоту
    handle the baggage
    обслуживать багаж
    handle the flight controls
    оперировать органами управления полетом
    have the runway in sight
    четко видеть ВПП
    head the aircraft into wind
    направлять воздушное судно против ветра
    hold on the heading
    выдерживать на заданном курсе
    hold over the aids
    выполнять полет в зоне ожидания
    hold over the beacon
    выполнять полет в режиме ожидания над аэродромом
    hold the aircraft on the heading
    выдерживать воздушное судно на заданном курсе
    hold the brake
    удерживать тормоза
    hold the heading on the compass
    выдерживать курс по компасу
    hold the position
    ожидать на месте
    hold the speed accurately
    точно выдерживать скорость
    hover at the height of
    зависать на высоте
    hovering in the ground effect
    висение в зоне влияния земли
    identify the aerodrome from the air
    опознавать аэродром с воздуха
    identify the aircraft
    опознавать воздушное судно
    identify the center line
    обозначать осевую линию
    impair the operation
    нарушать работу
    impair the safety
    снижать безопасность
    impose the limitations
    налагать ограничения
    in computing the fuel
    при расчете количества топлива
    in conformity with the specifications
    в соответствии с техническими условиями
    increase a camber of the profile
    увеличивать кривизну профиля
    increase the pitch
    увеличивать шаг
    increase the speed
    увеличивать скорость
    indicate the location from the air
    определять местоположение с воздуха
    inherent in the aircraft
    свойственный воздушному судну
    initiate the turn
    входить в разворот
    install in the aircraft
    устанавливать на борту воздушного судна
    install on the aircraft
    монтировать на воздушном судне
    intercept the beam
    выходить на ось луча
    intercept the glide slope
    захватывать луч глиссады
    International Relations Department of the Ministry of Civil Aviation
    Управление внешних сношений Министерства гражданской авиации
    interpretation of the signal
    расшифровка сигнала
    in the case of delay
    в случае задержки
    in the event of a mishap
    в случае происшествия
    in the event of malfunction
    в случая отказа
    introduction of the corrections
    ввод поправок
    issue the certificate
    выдавать сертификат
    jeopardize the flight
    подвергать полет опасности
    judge the safety
    оценивать степень опасности
    keep clear of the aircraft
    держаться на безопасном расстоянии от воздушного судна
    keep out of the way
    не занимать трассу
    keep tab on the fleet
    вести учет парка
    keep the aircraft on
    выдерживать воздушное судно
    keep the altitude
    выдерживать заданную высоту
    keep the ball centered
    держать шарик в центре
    keep the pace
    выдерживать дистанцию
    keep to the minima
    устанавливать минимум
    kick off the drift
    парировать снос
    kill the landing speed
    гасить посадочную скорость
    landing off the aerodrome
    посадка вне аэродрома
    land into the wind
    выполнять посадку против ветра
    land the aircraft
    приземлять воздушное судно
    latch the pitch stop
    устанавливать на упор шага
    (лопасти воздушного винта) latch the propeller flight stop
    ставить воздушный винт на полетный упор
    lateral the center-of-gravity
    поперечная центровка
    lay the route
    прокладывать маршрут
    lead in the aircraft
    заруливать воздушное судно
    lead out the aircraft
    выруливать воздушное судно
    leave the airspace
    покидать данное воздушное пространство
    leave the altitude
    уходить с заданной высоты
    leave the plane
    выходить из самолета
    leave the runway
    освобождать ВПП
    level the aircraft out
    выравнивать воздушное судно
    lie beyond the range
    находиться вне заданного предела
    line up the aircraft
    выруливать воздушное судно на исполнительный старт
    load the gear
    загружать редуктор
    load the generator
    нагружать генератор
    load the structure
    нагружать конструкцию
    lock the landing gear
    ставить шасси на замки
    lock the landing gear down
    ставить шасси на замок выпущенного положения
    lock the landing gear up
    ставить шасси на замок убранного положения
    lock the legs
    устанавливать шасси на замки выпущенного положения
    longitudinal the center-of-gravity
    продольная центровка
    lose the altitude
    терять высоту
    lose the speed
    терять заданную скорость
    loss the control
    терять управление
    lower the landing gear
    выпускать шасси
    lower the legs
    выпускать шасси
    lower the nose wheel
    опускать носовое колесо
    maintain the aircraft at readiness to
    держать воздушное судно готовым
    maintain the altitude
    выдерживать заданную высоту
    maintain the course
    выдерживать заданный курс
    maintain the flight level
    выдерживать заданный эшелон полета
    maintain the flight procedure
    выдерживать установленный порядок полетов
    maintain the flight watch
    выдерживать заданный график полета
    maintain the flying speed
    выдерживать требуемую скорость полета
    maintain the heading
    выдерживать заданный курс
    maintain the parameter
    выдерживать заданный параметр
    make a complaint against the company
    подавать жалобу на компанию
    make the aircraft airborne
    отрывать воздушное судно от земли
    make the course change
    изменять курс
    make the reservation
    забронировать место
    manipulate the flight controls
    оперировать органами управления полетом
    mark the obstacle
    маркировать препятствие
    mean scale of the chart
    средний масштаб карты
    meet the airworthiness standards
    удовлетворять нормам летной годности
    meet the conditions
    выполнять требования
    meet the specifications
    соблюдать технические условия
    misjudge the distance
    неправильно оценивать расстояние
    modify the flight plan
    уточнять план полета
    monitor the flight
    следить за полетом
    monitor the frequency
    контролировать заданную частоту
    moor the aircraft
    швартовать воздушное судно
    mount on the frame
    монтировать на шпангоуте
    move off from the rest
    страгивать с места
    move the blades to higher
    утяжелять воздушный винт
    move the pedal forward
    давать педаль вперед
    name-code of the route
    кодирование названия маршрута
    neglect the indicator
    не учитывать показания прибора
    note the instrument readings
    отмечать показания приборов
    note the time
    засекать время
    observe the conditions
    соблюдать условия
    observe the instruments
    следить за показаниями приборов
    observe the readings
    наблюдать за показаниями
    obtain the correct path
    выходить на заданную траекторию
    obtain the flying speed
    набирать заданную скорость полета
    obtain the forecast
    получать прогноз
    offer the capacity
    предлагать объем загрузки
    off-load the pump
    разгружать насос
    on the base leg
    выполнил третий разворот
    on the beam
    в зоне действия луча
    on the cross-wind leg
    выполнил первый разворот
    on the down-wind leg
    выполнил второй разворот
    on the eastbound leg
    на участке маршрута в восточном направлении
    on the final leg
    выполнил четвертый разворот
    on the left base leg
    подхожу к четвертому с левым разворотом
    on the speed
    на скорости
    on the upwind leg
    вхожу в круг
    open the buckets
    открывать створки
    open the circuit
    размыкать цепь
    open the door inward outward
    открывать люк внутрь наружу
    operate from the aerodrome
    выполнять полеты с аэродрома
    operate under the conditions
    эксплуатировать в заданных условиях
    overcome the obstacle
    преодолевать препятствие
    overcome the spring force
    преодолевать усилие пружины
    overflying the runway
    пролет над ВПП
    overpower the autopilot
    пересиливать автопилот
    overrun the runway
    выкатываться за пределы ВПП
    overshoot capture of the glide slope
    поздний захват глиссадного луча
    over the territory
    над территорией
    over the top
    над верхней границей облаков
    over the wing
    над крылом
    park in the baggage
    сдавать в багаж
    participation in the investigation
    участие в расследовании
    passing over the runway
    пролет над ВПП
    pass the signal
    пропускать сигнал
    past the turbine
    за турбиной
    perform the service bulletin
    выполнять доработку по бюллетеню
    pick up the signal
    фиксировать сигнал
    pick up the speed
    развивать заданную скорость
    pilot on the controls
    пилот, управляющий воздушным судном
    pitch the nose downward
    опускать нос
    place the aircraft
    устанавливать воздушное судно
    place the flaps in
    устанавливать закрылки
    plane of symmetry of the aeroplane
    плоскость симметрии самолета
    plot the aircraft
    засекать воздушное судно
    potential hazard to the safe
    потенциальная угроза безопасности
    power the bus
    включать шину
    present the minimum hazard
    представлять минимальную опасность
    preserve the clearance
    сохранять запас высоты
    pressurize the bearing
    уплотнять опору подачей давления
    produce the signal
    выдавать сигнал
    profitability over the route
    эффективность маршрута
    prolongation of the rating
    продление срока действия квалификационной отметки
    properly identify the aircraft
    точно опознавать воздушное судно
    protect the circuit
    защищать цепь
    prove the system
    испытывать систему
    pull out of the spin
    выводить из штопора
    pull the aircraft out of
    брать штурвал на себя
    pull the control column back
    брать штурвал на себя
    pull the control stick back
    брать ручку управления на себя
    pull up the helicopter
    резко увеличивать подъемную силу вертолета
    puncture the tire
    прокалывать покрышку
    push the aircraft back
    буксировать воздушное судно хвостом вперед
    push the aircraft down
    снижать высоту полета воздушного судна
    push the control column
    отдавать штурвал от себя
    push the control stick
    отдавать ручку управления от себя
    put into the spin
    вводить в штопор
    put on the course
    выходить на заданный курс
    put the aircraft into production
    запускать воздушное судно в производство
    put the aircraft on the course
    выводить воздушное судно на заданный курс
    put the aircraft over
    переводить воздушное судно в горизонтальный полет
    raise the landing gear
    убирать шасси
    reach the altitude
    занимать заданную высоту
    reach the flight level
    занимать заданный эшелон полета
    reach the glide path
    входить в зону глиссады
    reach the speed
    достигать заданных оборотов
    reach the stalling angle
    выходить на критический угол
    read the drift angle
    отсчитывать угол сноса
    read the instruments
    считывать показания приборов
    receive the signal
    принимать сигнал
    record the readings
    регистрировать показания
    recover from the spin
    выходить из штопора
    recover from the turn
    выходить из разворота
    recovery from the manoeuvre
    выход из маневра
    recovery from the stall
    вывод из режима сваливания
    recovery from the turn
    выход из разворота
    rectify the compass
    устранять девиацию компаса
    reduce the hazard
    уменьшать опасность
    reestablish the track
    восстанавливать заданную линию пути
    regain the glide path
    возвращаться на глиссаду
    regain the speed
    восстанавливать скорость
    regain the track
    возвращаться на заданный курс
    register the aircraft
    регистрировать воздушное судно
    release the aircraft
    прекращать контроль воздушного судна
    release the landing gear
    снимать шасси с замков убранного положения
    release the landing gear lock
    снимать шасси с замка
    release the load
    сбрасывать груз
    release the uplock
    открывать замок убранного положения
    relocate the plane's trim
    восстанавливать балансировку самолета
    remedy the defect
    устранять дефект
    remedy the trouble
    устранять отказ
    remove the aircraft
    удалять воздушное судно
    remove the crack
    выбирать трещину
    remove the tangle
    распутывать
    render the certificate
    передавать сертификат
    renew the license
    возобновлять действие свидетельства или лицензии
    renew the rating
    возобновлять действие квалификационной отметки
    replan the flight
    измерять маршрут полета
    report reaching the altitude
    докладывать о занятии заданной высоты
    report reaching the flight level
    докладывать о занятии заданного эшелона полета
    report the heading
    сообщать курс
    reset the gyroscope
    восстанавливать гироскоп
    restart the engine in flight
    запускать двигатель в полете
    restore the system
    восстанавливать работу системы
    restrict the operations
    накладывать ограничения на полеты
    resume the flight
    возобновлять полет
    resume the journey
    возобновлять полет
    retain the lever
    фиксировать рукоятку
    retract the landing gear
    убирать шасси
    return the aircraft to service
    допускать воздушное судно к дальнейшей эксплуатации
    reverse the propeller
    переводить винт на отрицательную тягу
    roll in the aircraft
    вводить воздушное судно в крен
    roll into the turn
    входить в разворот
    roll left on the heading
    выходить на курс с левым разворотом
    roll on the aircraft
    выполнять этап пробега воздушного судна
    roll on the course
    выводить на заданный курс
    roll out of the turn
    выходить из разворота
    roll out on the heading
    выходить на заданный курс
    roll out the aircraft
    выводить воздушное судно из крена
    roll right on the heading
    выходить на курс с правым разворотом
    rotate the aircraft
    отрывать переднюю опору шасси воздушного судна
    rotate the bogie
    запрокидывать тележку
    rules of the air
    правила полетов
    run fluid through the system
    прогонять систему
    run off the runway
    выкатываться за пределы ВПП
    run out the landing gear
    выпускать шасси
    schedule the performances
    задавать характеристики
    seat the brush
    притирать щетку
    second freedom of the air
    вторая степень свободы воздуха
    secure the mishap site
    обеспечивать охрану места происшествия
    select the course
    выбирать курс
    select the flight route
    выбирать маршрут полета
    select the frequency
    выбирать частоту
    select the heading
    задавать курс
    select the mode
    выбирать режим
    select the track angle
    задавать путевой угол
    separate the aircraft
    эшелонировать воздушное судно
    serve out the service life
    вырабатывать срок службы
    set at the desired angle
    устанавливать на требуемый угол
    set the course
    устанавливать курс
    set the flaps at
    устанавливать закрылки
    set the heading
    устанавливать курс
    set the propeller pitch
    устанавливать шаг воздушного винта
    set the throttle lever
    устанавливать сектор газа
    set up the speed
    задавать определенную скорость
    shift the center-of-gravity
    смещать центровку
    shop out the skin
    вырубать обшивку
    simulate the instruments responses
    имитировать показания приборов
    slacken the cable
    ослаблять натяжение троса
    slave the gyroscope
    согласовывать гироскоп
    smooth on the heading
    плавно выводить на заданный курс
    smooth out the crack
    удалять трещину
    smooth out the dent
    выправлять вмятину
    smooth the signal
    сглаживать сигнал
    space the aircraft
    определять зону полета воздушного судна
    spin the gyro rotor
    раскручивать ротор гироскопа
    state instituting the investigation
    государство, назначающее расследование
    (авиационного происшествия) state submitting the report
    государство, представляющее отчет
    (об авиационном происшествии) steady airflow about the wing
    установившееся обтекание крыла воздушным потоком
    steer the aircraft
    управлять воздушным судном
    stop the crack propagation
    предотвращать развитие трещины
    stop the leakage
    устранять течь
    submit the flight plan
    представлять план полета
    substitute the aircraft
    заменять воздушное судно
    supervision approved by the State
    надзор, установленный государством
    supply the signal
    подавать сигнал
    swing the compass
    списывать девиацию компаса
    swing the door open
    открывать створку
    switch to the autopilot
    переходить на управление с помощью автопилота
    switch to the proper tank
    включать подачу топлива из бака с помощью электрического крана
    takeoff into the wind
    взлетать против ветра
    take off power to the shaft
    отбирать мощность на вал
    take over the control
    брать управление на себя
    take the bearing
    брать заданный пеленг
    take the energy from
    отбирать энергию
    take the readings
    считывать показания
    take the taxiway
    занимать рулежную дорожку
    take up the backlash
    устранять люфт
    take up the position
    выходить на заданную высоту
    tap air from the compressor
    отбирать воздух от компрессора
    terminate the agreement
    прекращать действие соглашения
    terminate the control
    прекращать диспетчерское обслуживание
    terminate the flight
    завершать полет
    test in the wind tunnel
    продувать в аэродинамической трубе
    test the system
    испытывать систему
    the aircraft under command
    управляемое воздушное судно
    the route to be flown
    намеченный маршрут полета
    the route to be followed
    установленный маршрут полета
    the runway is clear
    ВПП свободна
    the runway is not clear
    ВПП занята
    the search is terminated
    поиск прекращен
    through on the same flight
    транзитом тем же рейсом
    throughout the service life
    на протяжении всего срока службы
    tighten the turn
    уменьшать радиус разворота
    time in the air
    налет часов
    time the valves
    регулировать газораспределение
    titl of the gyro
    завал гироскопа
    to define the airspace
    определять границы воздушного пространства
    transfer the control
    передавать диспетчерское управление другому пункту
    transit to the climb speed
    переходить к скорости набора высоты
    trim the aircraft
    балансировать воздушное судно
    turn into the wind
    разворачивать против ветра
    turn off the system
    выключать систему
    turn on the system
    включать систему
    turn the proper tank on
    включать подачу топлива из бока с помощью механического крана
    unarm the system
    отключать состояние готовности системы
    uncage the gyroscope
    разарретировать гироскоп
    unfeather the propeller
    выводить воздушный винт из флюгерного положения
    unlatch the landing gear
    снимать шасси с замков
    unlatch the pitch stop
    снимать с упора шага
    (лопасти воздушного винта) unstall the aircraft
    выводить воздушное судно из сваливания на крыло
    unstick the aircraft
    отрывать воздушное судно от земли
    uplift the freight
    принимать груз на борт
    violate the law
    нарушать установленный порядок
    wander off the course
    сбиваться с курса
    warn the aircraft
    предупреждать воздушное судно
    wind the generator
    наматывать обмотку генератора
    with decrease in the altitude
    со снижением высоты
    withdraw from the agreement
    выходить из соглашения
    with increase in the altitude
    с набором высоты
    within the frame of
    в пределах
    within the range
    в заданном диапазоне
    withstand the load
    выдерживать нагрузку
    work on the aircraft
    выполнять работу на воздушном судне
    write down the readings
    фиксировать показания

    English-Russian aviation dictionary > the

  • 18 дистанционное техническое обслуживание

    1. remote sevice
    2. remote maintenance

     

    дистанционное техническое обслуживание
    Техническое обслуживание объекта, проводимое под управлением персонала без его непосредственного присутствия.
    [ОСТ 45.152-99 ]

    Параллельные тексты EN-RU из ABB Review. Перевод компании Интент

    Service from afar

    Дистанционный сервис

    ABB’s Remote Service concept is revolutionizing the robotics industry

    Разработанная АББ концепция дистанционного обслуживания Remote Service революционизирует робототехнику

    ABB robots are found in industrial applications everywhere – lifting, packing, grinding and welding, to name a few. Robust and tireless, they work around the clock and are critical to a company’s productivity. Thus, keeping these robots in top shape is essential – any failure can lead to serious output consequences. But what happens when a robot malfunctions?

    Роботы АББ используются во всех отраслях промышленности для перемещения грузов, упаковки, шлифовки, сварки – всего и не перечислить. Надежные и неутомимые работники, способные трудиться день и ночь, они представляют большую ценность для владельца. Поэтому очень важно поддерживать их в надлежащей состоянии, ведь любой отказ может иметь серьезные последствия. Но что делать, если робот все-таки сломался?

    ABB’s new Remote Service concept holds the answer: This approach enables a malfunctioning robot to alarm for help itself. An ABB service engineer then receives whole diagnostic information via wireless technology, analyzes the data on a Web site and responds with support in just minutes. This unique service is paying off for customers and ABB alike, and in the process is revolutionizing service thinking.

    Ответом на этот вопрос стала новая концепция Remote Service от АББ, согласно которой неисправный робот сам просит о помощи. C помощью беспроводной технологии специалист сервисной службы АББ получает всю необходимую диагностическую информацию, анализирует данные на web-сайте и через считанные минуты выдает рекомендации по устранению отказа. Эта уникальная возможность одинаково ценна как для заказчиков, так и для самой компании АББ. В перспективе она способна в корне изменить весь подход к организации технического обслуживания.

    Every minute of production downtime can have financially disastrous consequences for a company. Traditional reactive service is no longer sufficient since on-site service engineer visits also demand great amounts of time and money. Thus, companies not only require faster help from the service organization when needed but they also want to avoid disturbances in production.

    Каждая минута простоя производства может привести к губительным финансовым последствиям. Традиционная организация сервиса, предусматривающая ликвидацию возникающих неисправностей, становится все менее эффективной, поскольку вызов сервисного инженера на место эксплуатации робота сопряжен с большими затратами времени и денег. Предприятия требуют от сервисной организации не только более быстрого оказания помощи, но и предотвращения возможных сбоев производства.

    In 2006, ABB developed a new approach to better meet customer’s expectations: Using the latest technologies to reach the robots at customer sites around the world, ABB could support them remotely in just minutes, thereby reducing the need for site visits. Thus the new Remote Service concept was quickly brought to fruition and was launched in mid-2007. Statistics show that by using the system the majority of production stoppages can be avoided.

    В 2006 г. компания АББ разработала новый подход к удовлетворению ожиданий своих заказчиков. Использование современных технологий позволяет специалистам АББ получать информацию от роботов из любой точки мира и в считанные минуты оказывать помощь дистанционно, в результате чего сокращается количество выездов на место установки. Запущенная в середине 2007 г. концепция Remote Service быстро себя оправдала. Статистика показывает, что её применение позволило предотвратить большое число остановок производства.

    Reactive maintenance The hardware that makes ABB Remote Service possible consists of a communication unit, which has a function similar to that of an airplane’s so-called black box 1. This “service box” is connected to the robot’s control system and can read and transmit diagnostic information. The unit not only reads critical diagnostic information that enables immediate support in the event of a failure, but also makes it possible to monitor and analyze the robot’s condition, thereby proactively detecting the need for maintenance.

    Устранение возникающих неисправностей Аппаратное устройство, с помощью которого реализуется концепция Remote Service, представляет собой коммуникационный блок, работающий аналогично черному ящику самолета (рис. 1). Этот блок считывает диагностические данные из контроллера робота и передает их по каналу GSM. Считывается не только информация, необходимая для оказания немедленной помощи в случае отказа, но и сведения, позволяющие контролировать и анализировать состояние робота для прогнозирования неисправностей и планирования технического обслуживания.

    If the robot breaks down, the service box immediately stores the status of the robot, its historical data (as log files), and diagnostic parameters such as temperature and power supply. Equipped with a built-in modem and using the GSM network, the box transmits the data to a central server for analysis and presentation on a dedicated Web site. Alerts are automatically sent to the nearest of ABB’s 1,200 robot service engineers who then accesses the detailed data and error log to analyze the problem.

    При поломке робота сервисный блок немедленно сохраняет данные о его состоянии, сведения из рабочего журнала, а также значения диагностических параметров (температура и характеристики питания). Эти данные передаются встроенным GSM-модемом на центральный сервер для анализа и представления на соответствующем web-сайте. Аварийные сообщения автоматически пересылаются ближайшему к месту аварии одному из 1200 сервисных инженеров-робототехников АББ, который получает доступ к детальной информации и журналу аварий для анализа возникшей проблемы.

    A remotely based ABB engineer can then quickly identify the exact fault, offering rapid customer support. For problems that cannot be solved remotely, the service engineer can arrange for quick delivery of spare parts and visit the site to repair the robot. Even if the engineer must make a site visit, service is faster, more efficient and performed to a higher standard than otherwise possible.

    Специалист АББ может дистанционно идентифицировать отказ и оказать быструю помощь заказчику. Если неисправность не может быть устранена дистанционно, сервисный инженер организовывает доставку запасных частей и выезд ремонтной бригады. Даже если необходимо разрешение проблемы на месте, предшествующая дистанционная диагностика позволяет минимизировать объем работ и сократить время простоя.

    Remote Service enables engineers to “talk” to robots remotely and to utilize tools that enable smart, fast and automatic analysis. The system is based on a machine-to-machine (M2M) concept, which works automatically, requiring human input only for analysis and personalized customer recommendations. ABB was recognized for this innovative solution at the M2M United Conference in Chicago in 2008 Factbox.

    Remote Service позволяет инженерам «разговаривать» с роботами на расстоянии и предоставляет в их распоряжение интеллектуальные средства быстрого автоматизированного анализа. Система основана на основе технологии автоматической связи машины с машиной (M2M), где участие человека сводится к анализу данных и выдаче рекомендаций клиенту. В 2008 г. это инновационное решение от АББ получило приз на конференции M2M United Conference в Чикаго (см. вставку).

    Proactive maintenance 
    Remote Service also allows ABB engineers to monitor and detect potential problems in the robot system and opens up new possibilities for proactive maintenance.

    Прогнозирование неисправностей
    Remote Service позволяет инженерам АББ дистанционно контролировать состояние роботов и прогнозировать возможные неисправности, что открывает новые возможности по организации профилактического обслуживания.

    The service box regularly takes condition measurements. By monitoring key parameters over time, Remote Service can identify potential failures and when necessary notify both the end customer and the appropriate ABB engineer. The management and storage of full system backups is a very powerful service to help recover from critical situations caused, for example, by operator errors.

    Сервисный блок регулярно выполняет диагностические измерения. Непрерывно контролируя ключевые параметры, Remote Service может распознать потенциальные опасности и, при необходимости, оповещать владельца оборудования и соответствующего специалиста АББ. Резервирование данных для возможного отката является мощным средством, обеспечивающим восстановление системы в критических ситуациях, например, после ошибки оператора.

    The first Remote Service installation took place in the automotive industry in the United States and quickly proved its value. The motherboard in a robot cabinet overheated and the rise in temperature triggered an alarm via Remote Service. Because of the alarm, engineers were able to replace a faulty fan, preventing a costly production shutdown.

    Первая система Remote Service была установлена на автозаводе в США и очень скоро была оценена по достоинству. Она обнаружила перегрев материнской платы в шкафу управления роботом и передала сигнал о превышении допустимой температуры, благодаря чему инженеры смогли заменить неисправный вентилятор и предотвратить дорогостоящую остановку производства.

    MyRobot: 24-hour remote access

    Having regular access to a robot’s condition data is also essential to achieving lean production. At any time, from any location, customers can verify their robots’ status and access maintenance information and performance reports simply by logging in to ABB’s MyRobot Web site. The service enables customers to easily compare performances, identify bottlenecks or developing issues, and initiate the most

    Сайт MyRobot: круглосуточный дистанционный доступ
    Для того чтобы обеспечить бесперебойное производство, необходимо иметь регулярный доступ к информации о состоянии робота. Зайдя на соответствующую страницу сайта MyRobot компании АББ, заказчики получат все необходимые данные, включая сведения о техническом обслуживании и отчеты о производительности своего робота. Эта услуга позволяет легко сравнивать данные о производительности, обнаруживать возможные проблемы, а также оптимизировать планирование технического обслуживания и модернизации. С помощью MyRobot можно значительно увеличить выпуск продукции и уменьшить количество выбросов.

    Award-winning solution
    In June 2008, the innovative Remote Service solution won the Gold Value Chain award at the M2M United Conference in Chicago. The value chain award honors successful corporate adopters of M2M (machine–to-machine) technology and highlights the process of combining multiple technologies to deliver high-quality services to customers. ABB won in the categoryof Smart Services.

    Приз за удачное решение
    В июне 2008 г. инновационное решение Remote Service получило награду Gold Value Chain (Золотая цепь) на конференции M2M United Conference в Чикаго. «Золотая цепь» присуждается за успешное масштабное внедрение технологии M2M (машина – машина), а также за достижения в объединении различных технологий для предоставления высококачественных услуг заказчикам. АББ одержала победу в номинации «Интеллектуальный сервис».

    Case study: Tetley Tetley GB Ltd is the world’s second-largest manufacturer and distributor of tea. The company’s manufacturing and distribution business is spread across 40 countries and sells over 60 branded tea bags. Tetley’s UK tea production facility in Eaglescliffe, County Durham is the sole producer of Tetley tea bags 2.

    Пример применения: Tetley Компания TetleyGB Ltd является вторым по величине мировым производителем и поставщиком чая. Производственные и торговые филиалы компании имеются в 40 странах, а продукция распространяется под 60 торговыми марками. Чаеразвесочная фабрика в Иглсклифф, графство Дарем, Великобритания – единственный производитель чая Tetley в пакетиках (рис. 2).

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which can help extend the mean time between failures, shorten the time to repair and lower the cost of automated production.

    Предлагаемые АББ контракты на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и общую стоимость автоматизированного производства.

    Robots in the plant’s production line were tripping alarms and delaying the whole production cycle. The spurious alarms resulted in much unnecessary downtime that was spent resetting the robots in the hope that another breakdown could be avoided. Each time an alarm was tripped, several hours of production time was lost. “It was for this reason that we were keen to try out ABB’s Remote Service agreement,” said Colin Trevor, plant maintenance manager.

    Установленные в технологической линии роботы выдавали аварийные сигналы, задерживающие выполнение производственного цикла. Ложные срабатывания вынуждали перезапускать роботов в надежде предотвратить возможные отказы, в результате чего после каждого аварийного сигнала производство останавливалось на несколько часов. «Именно поэтому мы решили попробовать заключить с АББ контракт на дистанционное техническое обслуживание», – сказал Колин Тревор, начальник технической службы фабрики.

    To prevent future disruptions caused by unplanned downtime, Tetley signed an ABB Response Package service agreement, which included installing a service box and system infrastructure into the robot control systems. Using the Remote Service solution, ABB remotely monitors and collects data on the “wear and tear” and productivity of the robotic cells; this data is then shared with the customer and contributes to smooth-running production cycles.

    Для предотвращения ущерба в результате незапланированных простоев Tetley заключила с АББ контракт на комплексное обслуживание Response Package, согласно которому системы управления роботами были дооборудованы сервисными блоками с необходимой инфраструктурой. С помощью Remote Service компания АББ дистанционно собирает данные о наработке, износе и производительности роботизированных модулей. Эти данные предоставляются заказчику для оптимизации загрузки производственного оборудования.

    Higher production uptime
    Since the implementation of Remote Service, Tetley has enjoyed greatly reduced robot downtime, with no further disruptions caused by unforeseen problems. “The Remote Service package has dramatically changed the plant,” said Trevor. “We no longer have breakdown issues throughout the shift, helping us to achieve much longer periods of robot uptime. As we have learned, world-class manufacturing facilities need world-class support packages. Remote monitoring of our robots helps us to maintain machine uptime, prevent costly downtime and ensures my employees can be put to more valuable use.”

    Увеличение полезного времени
    С момента внедрения Remote Service компания Tetley была приятно удивлена резким сокращением простоя роботов и отсутствием незапланированных остановок производства. «Пакет Remote Service резко изменил ситуацию на предприятии», – сказал Тревор. «Мы избавились от простоев роботов и смогли резко увеличить их эксплуатационную готовность. Мы поняли, что для производственного оборудования мирового класса необходим сервисный пакет мирового класса. Дистанционный контроль роботов помогает нам поддерживать их в рабочем состоянии, предотвращать дорогостоящие простои и задействовать наш персонал для выполнения более важных задач».

    Service access
    Remote Service is available worldwide, connecting more than 500 robots. Companies that have up to 30 robots are often good candidates for the Remote Service offering, as they usually have neither the engineers nor the requisite skills to deal with robotics faults themselves. Larger companies are also enthusiastic about Remote Service, as the proactive services will improve the lifetime of their equipment and increase overall production uptime.

    Доступность сервиса
    Сеть Remote Service охватывает более 700 роботов по всему миру. Потенциальными заказчиками Remote Service являются компании, имеющие до 30 роботов, но не имеющие инженеров и техников, способных самостоятельно устранять их неисправности. Интерес к Remote Service проявляют и более крупные компании, поскольку они заинтересованы в увеличении срока службы и эксплуатационной готовности производственного оборудования.

    In today’s competitive environment, business profitability often relies on demanding production schedules that do not always leave time for exhaustive or repeated equipment health checks. ABB’s Remote Service agreements are designed to monitor its customers’ robots to identify when problems are likely to occur and ensure that help is dispatched before the problem can escalate. In over 60 percent of ABB’s service calls, its robots can be brought back online remotely, without further intervention.

    В условиях современной конкуренции окупаемость бизнеса часто зависит от соблюдения жестких графиков производства, не оставляющих времени для полномасштабных или периодических проверок исправности оборудования. Контракт Remote Service предусматривает мониторинг состояния роботов заказчика для прогнозирования возможных неисправностей и принятие мер по их предотвращению. В более чем 60 % случаев для устранения неисправности достаточно дистанционной консультации в сервисной службе АББ, дальнейшего вмешательства не требуется.

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which helps extend the mean time between failures, shorten the time to repair and lower the total cost of ownership. With four new packages available – Support, Response, Maintenance and Warranty, each backed up by ABB’s Remote Service technology – businesses can minimize the impact of unplanned downtime and achieve improved production-line efficiency.

    Компания АББ предлагает гибкий выбор контрактов на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, которые позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и эксплуатационные расходы. Четыре новых пакета на основе технологии Remote Service Support, Response, Maintenance и Warranty – позволяют минимизировать внеплановые простои и значительно повысить эффективность производства.

    The benefits of Remote Sevice are clear: improved availability, fewer service visits, lower maintenance costs and maximized total cost of ownership. This unique service sets ABB apart from its competitors and is the beginning of a revolution in service thinking. It provides ABB with a great opportunity to improve customer access to its expertise and develop more advanced services worldwide.

    Преимущества дистанционного технического обслуживания очевидны: повышенная надежность, уменьшение выездов ремонтных бригад, уменьшение затрат на обслуживание и общих эксплуатационных расходов. Эта уникальная услуга дает компании АББ преимущества над конкурентами и демонстрирует революционный подход к организации сервиса. Благодаря ей компания АББ расширяет доступ заказчиков к опыту своих специалистов и получает возможность более эффективного оказания технической помощи по всему миру.

    Тематики

    • тех. обсл. и ремонт средств электросвязи

    Обобщающие термины

    EN

    Русско-английский словарь нормативно-технической терминологии > дистанционное техническое обслуживание

  • 19 remote maintenance

    1. дистанционное техническое обслуживание

     

    дистанционное техническое обслуживание
    Техническое обслуживание объекта, проводимое под управлением персонала без его непосредственного присутствия.
    [ОСТ 45.152-99 ]

    Параллельные тексты EN-RU из ABB Review. Перевод компании Интент

    Service from afar

    Дистанционный сервис

    ABB’s Remote Service concept is revolutionizing the robotics industry

    Разработанная АББ концепция дистанционного обслуживания Remote Service революционизирует робототехнику

    ABB robots are found in industrial applications everywhere – lifting, packing, grinding and welding, to name a few. Robust and tireless, they work around the clock and are critical to a company’s productivity. Thus, keeping these robots in top shape is essential – any failure can lead to serious output consequences. But what happens when a robot malfunctions?

    Роботы АББ используются во всех отраслях промышленности для перемещения грузов, упаковки, шлифовки, сварки – всего и не перечислить. Надежные и неутомимые работники, способные трудиться день и ночь, они представляют большую ценность для владельца. Поэтому очень важно поддерживать их в надлежащей состоянии, ведь любой отказ может иметь серьезные последствия. Но что делать, если робот все-таки сломался?

    ABB’s new Remote Service concept holds the answer: This approach enables a malfunctioning robot to alarm for help itself. An ABB service engineer then receives whole diagnostic information via wireless technology, analyzes the data on a Web site and responds with support in just minutes. This unique service is paying off for customers and ABB alike, and in the process is revolutionizing service thinking.

    Ответом на этот вопрос стала новая концепция Remote Service от АББ, согласно которой неисправный робот сам просит о помощи. C помощью беспроводной технологии специалист сервисной службы АББ получает всю необходимую диагностическую информацию, анализирует данные на web-сайте и через считанные минуты выдает рекомендации по устранению отказа. Эта уникальная возможность одинаково ценна как для заказчиков, так и для самой компании АББ. В перспективе она способна в корне изменить весь подход к организации технического обслуживания.

    Every minute of production downtime can have financially disastrous consequences for a company. Traditional reactive service is no longer sufficient since on-site service engineer visits also demand great amounts of time and money. Thus, companies not only require faster help from the service organization when needed but they also want to avoid disturbances in production.

    Каждая минута простоя производства может привести к губительным финансовым последствиям. Традиционная организация сервиса, предусматривающая ликвидацию возникающих неисправностей, становится все менее эффективной, поскольку вызов сервисного инженера на место эксплуатации робота сопряжен с большими затратами времени и денег. Предприятия требуют от сервисной организации не только более быстрого оказания помощи, но и предотвращения возможных сбоев производства.

    In 2006, ABB developed a new approach to better meet customer’s expectations: Using the latest technologies to reach the robots at customer sites around the world, ABB could support them remotely in just minutes, thereby reducing the need for site visits. Thus the new Remote Service concept was quickly brought to fruition and was launched in mid-2007. Statistics show that by using the system the majority of production stoppages can be avoided.

    В 2006 г. компания АББ разработала новый подход к удовлетворению ожиданий своих заказчиков. Использование современных технологий позволяет специалистам АББ получать информацию от роботов из любой точки мира и в считанные минуты оказывать помощь дистанционно, в результате чего сокращается количество выездов на место установки. Запущенная в середине 2007 г. концепция Remote Service быстро себя оправдала. Статистика показывает, что её применение позволило предотвратить большое число остановок производства.

    Reactive maintenance The hardware that makes ABB Remote Service possible consists of a communication unit, which has a function similar to that of an airplane’s so-called black box 1. This “service box” is connected to the robot’s control system and can read and transmit diagnostic information. The unit not only reads critical diagnostic information that enables immediate support in the event of a failure, but also makes it possible to monitor and analyze the robot’s condition, thereby proactively detecting the need for maintenance.

    Устранение возникающих неисправностей Аппаратное устройство, с помощью которого реализуется концепция Remote Service, представляет собой коммуникационный блок, работающий аналогично черному ящику самолета (рис. 1). Этот блок считывает диагностические данные из контроллера робота и передает их по каналу GSM. Считывается не только информация, необходимая для оказания немедленной помощи в случае отказа, но и сведения, позволяющие контролировать и анализировать состояние робота для прогнозирования неисправностей и планирования технического обслуживания.

    If the robot breaks down, the service box immediately stores the status of the robot, its historical data (as log files), and diagnostic parameters such as temperature and power supply. Equipped with a built-in modem and using the GSM network, the box transmits the data to a central server for analysis and presentation on a dedicated Web site. Alerts are automatically sent to the nearest of ABB’s 1,200 robot service engineers who then accesses the detailed data and error log to analyze the problem.

    При поломке робота сервисный блок немедленно сохраняет данные о его состоянии, сведения из рабочего журнала, а также значения диагностических параметров (температура и характеристики питания). Эти данные передаются встроенным GSM-модемом на центральный сервер для анализа и представления на соответствующем web-сайте. Аварийные сообщения автоматически пересылаются ближайшему к месту аварии одному из 1200 сервисных инженеров-робототехников АББ, который получает доступ к детальной информации и журналу аварий для анализа возникшей проблемы.

    A remotely based ABB engineer can then quickly identify the exact fault, offering rapid customer support. For problems that cannot be solved remotely, the service engineer can arrange for quick delivery of spare parts and visit the site to repair the robot. Even if the engineer must make a site visit, service is faster, more efficient and performed to a higher standard than otherwise possible.

    Специалист АББ может дистанционно идентифицировать отказ и оказать быструю помощь заказчику. Если неисправность не может быть устранена дистанционно, сервисный инженер организовывает доставку запасных частей и выезд ремонтной бригады. Даже если необходимо разрешение проблемы на месте, предшествующая дистанционная диагностика позволяет минимизировать объем работ и сократить время простоя.

    Remote Service enables engineers to “talk” to robots remotely and to utilize tools that enable smart, fast and automatic analysis. The system is based on a machine-to-machine (M2M) concept, which works automatically, requiring human input only for analysis and personalized customer recommendations. ABB was recognized for this innovative solution at the M2M United Conference in Chicago in 2008 Factbox.

    Remote Service позволяет инженерам «разговаривать» с роботами на расстоянии и предоставляет в их распоряжение интеллектуальные средства быстрого автоматизированного анализа. Система основана на основе технологии автоматической связи машины с машиной (M2M), где участие человека сводится к анализу данных и выдаче рекомендаций клиенту. В 2008 г. это инновационное решение от АББ получило приз на конференции M2M United Conference в Чикаго (см. вставку).

    Proactive maintenance 
    Remote Service also allows ABB engineers to monitor and detect potential problems in the robot system and opens up new possibilities for proactive maintenance.

    Прогнозирование неисправностей
    Remote Service позволяет инженерам АББ дистанционно контролировать состояние роботов и прогнозировать возможные неисправности, что открывает новые возможности по организации профилактического обслуживания.

    The service box regularly takes condition measurements. By monitoring key parameters over time, Remote Service can identify potential failures and when necessary notify both the end customer and the appropriate ABB engineer. The management and storage of full system backups is a very powerful service to help recover from critical situations caused, for example, by operator errors.

    Сервисный блок регулярно выполняет диагностические измерения. Непрерывно контролируя ключевые параметры, Remote Service может распознать потенциальные опасности и, при необходимости, оповещать владельца оборудования и соответствующего специалиста АББ. Резервирование данных для возможного отката является мощным средством, обеспечивающим восстановление системы в критических ситуациях, например, после ошибки оператора.

    The first Remote Service installation took place in the automotive industry in the United States and quickly proved its value. The motherboard in a robot cabinet overheated and the rise in temperature triggered an alarm via Remote Service. Because of the alarm, engineers were able to replace a faulty fan, preventing a costly production shutdown.

    Первая система Remote Service была установлена на автозаводе в США и очень скоро была оценена по достоинству. Она обнаружила перегрев материнской платы в шкафу управления роботом и передала сигнал о превышении допустимой температуры, благодаря чему инженеры смогли заменить неисправный вентилятор и предотвратить дорогостоящую остановку производства.

    MyRobot: 24-hour remote access

    Having regular access to a robot’s condition data is also essential to achieving lean production. At any time, from any location, customers can verify their robots’ status and access maintenance information and performance reports simply by logging in to ABB’s MyRobot Web site. The service enables customers to easily compare performances, identify bottlenecks or developing issues, and initiate the most

    Сайт MyRobot: круглосуточный дистанционный доступ
    Для того чтобы обеспечить бесперебойное производство, необходимо иметь регулярный доступ к информации о состоянии робота. Зайдя на соответствующую страницу сайта MyRobot компании АББ, заказчики получат все необходимые данные, включая сведения о техническом обслуживании и отчеты о производительности своего робота. Эта услуга позволяет легко сравнивать данные о производительности, обнаруживать возможные проблемы, а также оптимизировать планирование технического обслуживания и модернизации. С помощью MyRobot можно значительно увеличить выпуск продукции и уменьшить количество выбросов.

    Award-winning solution
    In June 2008, the innovative Remote Service solution won the Gold Value Chain award at the M2M United Conference in Chicago. The value chain award honors successful corporate adopters of M2M (machine–to-machine) technology and highlights the process of combining multiple technologies to deliver high-quality services to customers. ABB won in the categoryof Smart Services.

    Приз за удачное решение
    В июне 2008 г. инновационное решение Remote Service получило награду Gold Value Chain (Золотая цепь) на конференции M2M United Conference в Чикаго. «Золотая цепь» присуждается за успешное масштабное внедрение технологии M2M (машина – машина), а также за достижения в объединении различных технологий для предоставления высококачественных услуг заказчикам. АББ одержала победу в номинации «Интеллектуальный сервис».

    Case study: Tetley Tetley GB Ltd is the world’s second-largest manufacturer and distributor of tea. The company’s manufacturing and distribution business is spread across 40 countries and sells over 60 branded tea bags. Tetley’s UK tea production facility in Eaglescliffe, County Durham is the sole producer of Tetley tea bags 2.

    Пример применения: Tetley Компания TetleyGB Ltd является вторым по величине мировым производителем и поставщиком чая. Производственные и торговые филиалы компании имеются в 40 странах, а продукция распространяется под 60 торговыми марками. Чаеразвесочная фабрика в Иглсклифф, графство Дарем, Великобритания – единственный производитель чая Tetley в пакетиках (рис. 2).

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which can help extend the mean time between failures, shorten the time to repair and lower the cost of automated production.

    Предлагаемые АББ контракты на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и общую стоимость автоматизированного производства.

    Robots in the plant’s production line were tripping alarms and delaying the whole production cycle. The spurious alarms resulted in much unnecessary downtime that was spent resetting the robots in the hope that another breakdown could be avoided. Each time an alarm was tripped, several hours of production time was lost. “It was for this reason that we were keen to try out ABB’s Remote Service agreement,” said Colin Trevor, plant maintenance manager.

    Установленные в технологической линии роботы выдавали аварийные сигналы, задерживающие выполнение производственного цикла. Ложные срабатывания вынуждали перезапускать роботов в надежде предотвратить возможные отказы, в результате чего после каждого аварийного сигнала производство останавливалось на несколько часов. «Именно поэтому мы решили попробовать заключить с АББ контракт на дистанционное техническое обслуживание», – сказал Колин Тревор, начальник технической службы фабрики.

    To prevent future disruptions caused by unplanned downtime, Tetley signed an ABB Response Package service agreement, which included installing a service box and system infrastructure into the robot control systems. Using the Remote Service solution, ABB remotely monitors and collects data on the “wear and tear” and productivity of the robotic cells; this data is then shared with the customer and contributes to smooth-running production cycles.

    Для предотвращения ущерба в результате незапланированных простоев Tetley заключила с АББ контракт на комплексное обслуживание Response Package, согласно которому системы управления роботами были дооборудованы сервисными блоками с необходимой инфраструктурой. С помощью Remote Service компания АББ дистанционно собирает данные о наработке, износе и производительности роботизированных модулей. Эти данные предоставляются заказчику для оптимизации загрузки производственного оборудования.

    Higher production uptime
    Since the implementation of Remote Service, Tetley has enjoyed greatly reduced robot downtime, with no further disruptions caused by unforeseen problems. “The Remote Service package has dramatically changed the plant,” said Trevor. “We no longer have breakdown issues throughout the shift, helping us to achieve much longer periods of robot uptime. As we have learned, world-class manufacturing facilities need world-class support packages. Remote monitoring of our robots helps us to maintain machine uptime, prevent costly downtime and ensures my employees can be put to more valuable use.”

    Увеличение полезного времени
    С момента внедрения Remote Service компания Tetley была приятно удивлена резким сокращением простоя роботов и отсутствием незапланированных остановок производства. «Пакет Remote Service резко изменил ситуацию на предприятии», – сказал Тревор. «Мы избавились от простоев роботов и смогли резко увеличить их эксплуатационную готовность. Мы поняли, что для производственного оборудования мирового класса необходим сервисный пакет мирового класса. Дистанционный контроль роботов помогает нам поддерживать их в рабочем состоянии, предотвращать дорогостоящие простои и задействовать наш персонал для выполнения более важных задач».

    Service access
    Remote Service is available worldwide, connecting more than 500 robots. Companies that have up to 30 robots are often good candidates for the Remote Service offering, as they usually have neither the engineers nor the requisite skills to deal with robotics faults themselves. Larger companies are also enthusiastic about Remote Service, as the proactive services will improve the lifetime of their equipment and increase overall production uptime.

    Доступность сервиса
    Сеть Remote Service охватывает более 700 роботов по всему миру. Потенциальными заказчиками Remote Service являются компании, имеющие до 30 роботов, но не имеющие инженеров и техников, способных самостоятельно устранять их неисправности. Интерес к Remote Service проявляют и более крупные компании, поскольку они заинтересованы в увеличении срока службы и эксплуатационной готовности производственного оборудования.

    In today’s competitive environment, business profitability often relies on demanding production schedules that do not always leave time for exhaustive or repeated equipment health checks. ABB’s Remote Service agreements are designed to monitor its customers’ robots to identify when problems are likely to occur and ensure that help is dispatched before the problem can escalate. In over 60 percent of ABB’s service calls, its robots can be brought back online remotely, without further intervention.

    В условиях современной конкуренции окупаемость бизнеса часто зависит от соблюдения жестких графиков производства, не оставляющих времени для полномасштабных или периодических проверок исправности оборудования. Контракт Remote Service предусматривает мониторинг состояния роботов заказчика для прогнозирования возможных неисправностей и принятие мер по их предотвращению. В более чем 60 % случаев для устранения неисправности достаточно дистанционной консультации в сервисной службе АББ, дальнейшего вмешательства не требуется.

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which helps extend the mean time between failures, shorten the time to repair and lower the total cost of ownership. With four new packages available – Support, Response, Maintenance and Warranty, each backed up by ABB’s Remote Service technology – businesses can minimize the impact of unplanned downtime and achieve improved production-line efficiency.

    Компания АББ предлагает гибкий выбор контрактов на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, которые позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и эксплуатационные расходы. Четыре новых пакета на основе технологии Remote Service Support, Response, Maintenance и Warranty – позволяют минимизировать внеплановые простои и значительно повысить эффективность производства.

    The benefits of Remote Sevice are clear: improved availability, fewer service visits, lower maintenance costs and maximized total cost of ownership. This unique service sets ABB apart from its competitors and is the beginning of a revolution in service thinking. It provides ABB with a great opportunity to improve customer access to its expertise and develop more advanced services worldwide.

    Преимущества дистанционного технического обслуживания очевидны: повышенная надежность, уменьшение выездов ремонтных бригад, уменьшение затрат на обслуживание и общих эксплуатационных расходов. Эта уникальная услуга дает компании АББ преимущества над конкурентами и демонстрирует революционный подход к организации сервиса. Благодаря ей компания АББ расширяет доступ заказчиков к опыту своих специалистов и получает возможность более эффективного оказания технической помощи по всему миру.

    Тематики

    • тех. обсл. и ремонт средств электросвязи

    Обобщающие термины

    EN

    Англо-русский словарь нормативно-технической терминологии > remote maintenance

  • 20 remote sevice

    1. дистанционное техническое обслуживание

     

    дистанционное техническое обслуживание
    Техническое обслуживание объекта, проводимое под управлением персонала без его непосредственного присутствия.
    [ОСТ 45.152-99 ]

    Параллельные тексты EN-RU из ABB Review. Перевод компании Интент

    Service from afar

    Дистанционный сервис

    ABB’s Remote Service concept is revolutionizing the robotics industry

    Разработанная АББ концепция дистанционного обслуживания Remote Service революционизирует робототехнику

    ABB robots are found in industrial applications everywhere – lifting, packing, grinding and welding, to name a few. Robust and tireless, they work around the clock and are critical to a company’s productivity. Thus, keeping these robots in top shape is essential – any failure can lead to serious output consequences. But what happens when a robot malfunctions?

    Роботы АББ используются во всех отраслях промышленности для перемещения грузов, упаковки, шлифовки, сварки – всего и не перечислить. Надежные и неутомимые работники, способные трудиться день и ночь, они представляют большую ценность для владельца. Поэтому очень важно поддерживать их в надлежащей состоянии, ведь любой отказ может иметь серьезные последствия. Но что делать, если робот все-таки сломался?

    ABB’s new Remote Service concept holds the answer: This approach enables a malfunctioning robot to alarm for help itself. An ABB service engineer then receives whole diagnostic information via wireless technology, analyzes the data on a Web site and responds with support in just minutes. This unique service is paying off for customers and ABB alike, and in the process is revolutionizing service thinking.

    Ответом на этот вопрос стала новая концепция Remote Service от АББ, согласно которой неисправный робот сам просит о помощи. C помощью беспроводной технологии специалист сервисной службы АББ получает всю необходимую диагностическую информацию, анализирует данные на web-сайте и через считанные минуты выдает рекомендации по устранению отказа. Эта уникальная возможность одинаково ценна как для заказчиков, так и для самой компании АББ. В перспективе она способна в корне изменить весь подход к организации технического обслуживания.

    Every minute of production downtime can have financially disastrous consequences for a company. Traditional reactive service is no longer sufficient since on-site service engineer visits also demand great amounts of time and money. Thus, companies not only require faster help from the service organization when needed but they also want to avoid disturbances in production.

    Каждая минута простоя производства может привести к губительным финансовым последствиям. Традиционная организация сервиса, предусматривающая ликвидацию возникающих неисправностей, становится все менее эффективной, поскольку вызов сервисного инженера на место эксплуатации робота сопряжен с большими затратами времени и денег. Предприятия требуют от сервисной организации не только более быстрого оказания помощи, но и предотвращения возможных сбоев производства.

    In 2006, ABB developed a new approach to better meet customer’s expectations: Using the latest technologies to reach the robots at customer sites around the world, ABB could support them remotely in just minutes, thereby reducing the need for site visits. Thus the new Remote Service concept was quickly brought to fruition and was launched in mid-2007. Statistics show that by using the system the majority of production stoppages can be avoided.

    В 2006 г. компания АББ разработала новый подход к удовлетворению ожиданий своих заказчиков. Использование современных технологий позволяет специалистам АББ получать информацию от роботов из любой точки мира и в считанные минуты оказывать помощь дистанционно, в результате чего сокращается количество выездов на место установки. Запущенная в середине 2007 г. концепция Remote Service быстро себя оправдала. Статистика показывает, что её применение позволило предотвратить большое число остановок производства.

    Reactive maintenance The hardware that makes ABB Remote Service possible consists of a communication unit, which has a function similar to that of an airplane’s so-called black box 1. This “service box” is connected to the robot’s control system and can read and transmit diagnostic information. The unit not only reads critical diagnostic information that enables immediate support in the event of a failure, but also makes it possible to monitor and analyze the robot’s condition, thereby proactively detecting the need for maintenance.

    Устранение возникающих неисправностей Аппаратное устройство, с помощью которого реализуется концепция Remote Service, представляет собой коммуникационный блок, работающий аналогично черному ящику самолета (рис. 1). Этот блок считывает диагностические данные из контроллера робота и передает их по каналу GSM. Считывается не только информация, необходимая для оказания немедленной помощи в случае отказа, но и сведения, позволяющие контролировать и анализировать состояние робота для прогнозирования неисправностей и планирования технического обслуживания.

    If the robot breaks down, the service box immediately stores the status of the robot, its historical data (as log files), and diagnostic parameters such as temperature and power supply. Equipped with a built-in modem and using the GSM network, the box transmits the data to a central server for analysis and presentation on a dedicated Web site. Alerts are automatically sent to the nearest of ABB’s 1,200 robot service engineers who then accesses the detailed data and error log to analyze the problem.

    При поломке робота сервисный блок немедленно сохраняет данные о его состоянии, сведения из рабочего журнала, а также значения диагностических параметров (температура и характеристики питания). Эти данные передаются встроенным GSM-модемом на центральный сервер для анализа и представления на соответствующем web-сайте. Аварийные сообщения автоматически пересылаются ближайшему к месту аварии одному из 1200 сервисных инженеров-робототехников АББ, который получает доступ к детальной информации и журналу аварий для анализа возникшей проблемы.

    A remotely based ABB engineer can then quickly identify the exact fault, offering rapid customer support. For problems that cannot be solved remotely, the service engineer can arrange for quick delivery of spare parts and visit the site to repair the robot. Even if the engineer must make a site visit, service is faster, more efficient and performed to a higher standard than otherwise possible.

    Специалист АББ может дистанционно идентифицировать отказ и оказать быструю помощь заказчику. Если неисправность не может быть устранена дистанционно, сервисный инженер организовывает доставку запасных частей и выезд ремонтной бригады. Даже если необходимо разрешение проблемы на месте, предшествующая дистанционная диагностика позволяет минимизировать объем работ и сократить время простоя.

    Remote Service enables engineers to “talk” to robots remotely and to utilize tools that enable smart, fast and automatic analysis. The system is based on a machine-to-machine (M2M) concept, which works automatically, requiring human input only for analysis and personalized customer recommendations. ABB was recognized for this innovative solution at the M2M United Conference in Chicago in 2008 Factbox.

    Remote Service позволяет инженерам «разговаривать» с роботами на расстоянии и предоставляет в их распоряжение интеллектуальные средства быстрого автоматизированного анализа. Система основана на основе технологии автоматической связи машины с машиной (M2M), где участие человека сводится к анализу данных и выдаче рекомендаций клиенту. В 2008 г. это инновационное решение от АББ получило приз на конференции M2M United Conference в Чикаго (см. вставку).

    Proactive maintenance 
    Remote Service also allows ABB engineers to monitor and detect potential problems in the robot system and opens up new possibilities for proactive maintenance.

    Прогнозирование неисправностей
    Remote Service позволяет инженерам АББ дистанционно контролировать состояние роботов и прогнозировать возможные неисправности, что открывает новые возможности по организации профилактического обслуживания.

    The service box regularly takes condition measurements. By monitoring key parameters over time, Remote Service can identify potential failures and when necessary notify both the end customer and the appropriate ABB engineer. The management and storage of full system backups is a very powerful service to help recover from critical situations caused, for example, by operator errors.

    Сервисный блок регулярно выполняет диагностические измерения. Непрерывно контролируя ключевые параметры, Remote Service может распознать потенциальные опасности и, при необходимости, оповещать владельца оборудования и соответствующего специалиста АББ. Резервирование данных для возможного отката является мощным средством, обеспечивающим восстановление системы в критических ситуациях, например, после ошибки оператора.

    The first Remote Service installation took place in the automotive industry in the United States and quickly proved its value. The motherboard in a robot cabinet overheated and the rise in temperature triggered an alarm via Remote Service. Because of the alarm, engineers were able to replace a faulty fan, preventing a costly production shutdown.

    Первая система Remote Service была установлена на автозаводе в США и очень скоро была оценена по достоинству. Она обнаружила перегрев материнской платы в шкафу управления роботом и передала сигнал о превышении допустимой температуры, благодаря чему инженеры смогли заменить неисправный вентилятор и предотвратить дорогостоящую остановку производства.

    MyRobot: 24-hour remote access

    Having regular access to a robot’s condition data is also essential to achieving lean production. At any time, from any location, customers can verify their robots’ status and access maintenance information and performance reports simply by logging in to ABB’s MyRobot Web site. The service enables customers to easily compare performances, identify bottlenecks or developing issues, and initiate the most

    Сайт MyRobot: круглосуточный дистанционный доступ
    Для того чтобы обеспечить бесперебойное производство, необходимо иметь регулярный доступ к информации о состоянии робота. Зайдя на соответствующую страницу сайта MyRobot компании АББ, заказчики получат все необходимые данные, включая сведения о техническом обслуживании и отчеты о производительности своего робота. Эта услуга позволяет легко сравнивать данные о производительности, обнаруживать возможные проблемы, а также оптимизировать планирование технического обслуживания и модернизации. С помощью MyRobot можно значительно увеличить выпуск продукции и уменьшить количество выбросов.

    Award-winning solution
    In June 2008, the innovative Remote Service solution won the Gold Value Chain award at the M2M United Conference in Chicago. The value chain award honors successful corporate adopters of M2M (machine–to-machine) technology and highlights the process of combining multiple technologies to deliver high-quality services to customers. ABB won in the categoryof Smart Services.

    Приз за удачное решение
    В июне 2008 г. инновационное решение Remote Service получило награду Gold Value Chain (Золотая цепь) на конференции M2M United Conference в Чикаго. «Золотая цепь» присуждается за успешное масштабное внедрение технологии M2M (машина – машина), а также за достижения в объединении различных технологий для предоставления высококачественных услуг заказчикам. АББ одержала победу в номинации «Интеллектуальный сервис».

    Case study: Tetley Tetley GB Ltd is the world’s second-largest manufacturer and distributor of tea. The company’s manufacturing and distribution business is spread across 40 countries and sells over 60 branded tea bags. Tetley’s UK tea production facility in Eaglescliffe, County Durham is the sole producer of Tetley tea bags 2.

    Пример применения: Tetley Компания TetleyGB Ltd является вторым по величине мировым производителем и поставщиком чая. Производственные и торговые филиалы компании имеются в 40 странах, а продукция распространяется под 60 торговыми марками. Чаеразвесочная фабрика в Иглсклифф, графство Дарем, Великобритания – единственный производитель чая Tetley в пакетиках (рис. 2).

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which can help extend the mean time between failures, shorten the time to repair and lower the cost of automated production.

    Предлагаемые АББ контракты на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и общую стоимость автоматизированного производства.

    Robots in the plant’s production line were tripping alarms and delaying the whole production cycle. The spurious alarms resulted in much unnecessary downtime that was spent resetting the robots in the hope that another breakdown could be avoided. Each time an alarm was tripped, several hours of production time was lost. “It was for this reason that we were keen to try out ABB’s Remote Service agreement,” said Colin Trevor, plant maintenance manager.

    Установленные в технологической линии роботы выдавали аварийные сигналы, задерживающие выполнение производственного цикла. Ложные срабатывания вынуждали перезапускать роботов в надежде предотвратить возможные отказы, в результате чего после каждого аварийного сигнала производство останавливалось на несколько часов. «Именно поэтому мы решили попробовать заключить с АББ контракт на дистанционное техническое обслуживание», – сказал Колин Тревор, начальник технической службы фабрики.

    To prevent future disruptions caused by unplanned downtime, Tetley signed an ABB Response Package service agreement, which included installing a service box and system infrastructure into the robot control systems. Using the Remote Service solution, ABB remotely monitors and collects data on the “wear and tear” and productivity of the robotic cells; this data is then shared with the customer and contributes to smooth-running production cycles.

    Для предотвращения ущерба в результате незапланированных простоев Tetley заключила с АББ контракт на комплексное обслуживание Response Package, согласно которому системы управления роботами были дооборудованы сервисными блоками с необходимой инфраструктурой. С помощью Remote Service компания АББ дистанционно собирает данные о наработке, износе и производительности роботизированных модулей. Эти данные предоставляются заказчику для оптимизации загрузки производственного оборудования.

    Higher production uptime
    Since the implementation of Remote Service, Tetley has enjoyed greatly reduced robot downtime, with no further disruptions caused by unforeseen problems. “The Remote Service package has dramatically changed the plant,” said Trevor. “We no longer have breakdown issues throughout the shift, helping us to achieve much longer periods of robot uptime. As we have learned, world-class manufacturing facilities need world-class support packages. Remote monitoring of our robots helps us to maintain machine uptime, prevent costly downtime and ensures my employees can be put to more valuable use.”

    Увеличение полезного времени
    С момента внедрения Remote Service компания Tetley была приятно удивлена резким сокращением простоя роботов и отсутствием незапланированных остановок производства. «Пакет Remote Service резко изменил ситуацию на предприятии», – сказал Тревор. «Мы избавились от простоев роботов и смогли резко увеличить их эксплуатационную готовность. Мы поняли, что для производственного оборудования мирового класса необходим сервисный пакет мирового класса. Дистанционный контроль роботов помогает нам поддерживать их в рабочем состоянии, предотвращать дорогостоящие простои и задействовать наш персонал для выполнения более важных задач».

    Service access
    Remote Service is available worldwide, connecting more than 500 robots. Companies that have up to 30 robots are often good candidates for the Remote Service offering, as they usually have neither the engineers nor the requisite skills to deal with robotics faults themselves. Larger companies are also enthusiastic about Remote Service, as the proactive services will improve the lifetime of their equipment and increase overall production uptime.

    Доступность сервиса
    Сеть Remote Service охватывает более 700 роботов по всему миру. Потенциальными заказчиками Remote Service являются компании, имеющие до 30 роботов, но не имеющие инженеров и техников, способных самостоятельно устранять их неисправности. Интерес к Remote Service проявляют и более крупные компании, поскольку они заинтересованы в увеличении срока службы и эксплуатационной готовности производственного оборудования.

    In today’s competitive environment, business profitability often relies on demanding production schedules that do not always leave time for exhaustive or repeated equipment health checks. ABB’s Remote Service agreements are designed to monitor its customers’ robots to identify when problems are likely to occur and ensure that help is dispatched before the problem can escalate. In over 60 percent of ABB’s service calls, its robots can be brought back online remotely, without further intervention.

    В условиях современной конкуренции окупаемость бизнеса часто зависит от соблюдения жестких графиков производства, не оставляющих времени для полномасштабных или периодических проверок исправности оборудования. Контракт Remote Service предусматривает мониторинг состояния роботов заказчика для прогнозирования возможных неисправностей и принятие мер по их предотвращению. В более чем 60 % случаев для устранения неисправности достаточно дистанционной консультации в сервисной службе АББ, дальнейшего вмешательства не требуется.

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which helps extend the mean time between failures, shorten the time to repair and lower the total cost of ownership. With four new packages available – Support, Response, Maintenance and Warranty, each backed up by ABB’s Remote Service technology – businesses can minimize the impact of unplanned downtime and achieve improved production-line efficiency.

    Компания АББ предлагает гибкий выбор контрактов на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, которые позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и эксплуатационные расходы. Четыре новых пакета на основе технологии Remote Service Support, Response, Maintenance и Warranty – позволяют минимизировать внеплановые простои и значительно повысить эффективность производства.

    The benefits of Remote Sevice are clear: improved availability, fewer service visits, lower maintenance costs and maximized total cost of ownership. This unique service sets ABB apart from its competitors and is the beginning of a revolution in service thinking. It provides ABB with a great opportunity to improve customer access to its expertise and develop more advanced services worldwide.

    Преимущества дистанционного технического обслуживания очевидны: повышенная надежность, уменьшение выездов ремонтных бригад, уменьшение затрат на обслуживание и общих эксплуатационных расходов. Эта уникальная услуга дает компании АББ преимущества над конкурентами и демонстрирует революционный подход к организации сервиса. Благодаря ей компания АББ расширяет доступ заказчиков к опыту своих специалистов и получает возможность более эффективного оказания технической помощи по всему миру.

    Тематики

    • тех. обсл. и ремонт средств электросвязи

    Обобщающие термины

    EN

    Англо-русский словарь нормативно-технической терминологии > remote sevice

См. также в других словарях:

  • Стоимость типового отказа — 8. Стоимость типового отказа Средняя стоимость обнаружения я устранения причин отказа определенного типа Под временем ремонтов подразумевается время обнаружения и устранения прячян отказов Источник: ОСТ 24.190.01: Надежность изделий подъемно… …   Словарь-справочник терминов нормативно-технической документации

  • СТОИМОСТЬ НАКОПЛЕНИЯ — В страховании жизни: стоимость, накопленная по универсальному полису страхования жизни, рассчитанная путем определения всей суммы оплаченных страховых премий и процента, кредитуемого по счету, уменьшенных на сумму вычетов на расходы, кредиты и… …   Страхование и управление риском. Терминологический словарь

  • СТОИМОСТЬ, ВЫПЛАЧИВАЕМАЯ НАЛИЧНЫМИ ПРИ ОТКАЗЕ ОТ ПРАВ ПО ПОЛИСУ — В страховании жизни: деньги, которые держатель полиса имеет право получить от страховой компании после отказа от прав по полису страхования жизни до наступления даты платежа по полису или указанного в полисе страхового события. Сумма представляет …   Страхование и управление риском. Терминологический словарь

  • НАЛОГ НА ДОБАВЛЕННУЮ СТОИМОСТЬ, НДС — (англ. value added tax, VAT) – многоступенчатый косвенный налог, которым облагаются операции по продаже (поставке, передаче, сдаче в аренду) товаров, выполнению работ, оказанию услуг. Относится к группе налогов на потребление; как правило,… …   Финансово-кредитный энциклопедический словарь

  • Стресс-тестирование программного обеспечения — Стресс тестирование (англ. Stress Testing) один из видов тестирования программного обеспечения, которое оценивает надёжность и устойчивость системы в условиях превышения пределов нормального функционирования. Стресс тестирование особенно… …   Википедия

  • Средняя — периодическое увлажнение пола, при котором поверхность покрытия пола влажная или мокрая; покрытие пола пропитывается жидкостями. Источник: МДС 31 12.2007: Полы жилых, общественных и производственных зданий с применением м …   Словарь-справочник терминов нормативно-технической документации

  • ЗАКОН ОБ ОБРАЩАЮЩИХСЯ ДОКУМЕНТАХ — NEGOTIABLE INSTRUMENTS LAWЭто закон, относящийся к обращающимся документам, дважды подвергавшийся кодификации с целью достижения большего единообразия для различных штатов. Начиная с 1897 г. первоначальный Единый закон об обращающихся документах… …   Энциклопедия банковского дела и финансов

  • Пошлина — (Duty) Содержание Содержание 1. Понятие и значение государственной Антидемпинговая пошлина как мера государственного регулирования внешнеторговой деятельности 2. Виды государственной пошлины 3. Место государственной пошлины в 4. Плательщики,… …   Энциклопедия инвестора

  • Банкротство — (Bankruptcy) Банкротство это признанная судом неспособность исполнить обязательства по уплате взятых в долг денежных средств Суть банкротства, его признаки и характеристика, законодательство о банкротстве, управление и пути предотвращения… …   Энциклопедия инвестора

  • Товарный знак — (Trademark) Поянтие торговый знак, регистрация и использование торгового знака Информация о понятии товарный знак, регистрация и использование товарного знака, защита торгового знака Содержание Содержание История тест типо тут тест товарный знак… …   Энциклопедия инвестора

  • ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ — в соответствии со ст. 86 ГК обществом с ограниченной ответственностью (далее ООО) признается учрежденное двумя или более лицами общество, уставный фонд которого разделен на доли определенных учредительными документами размеров. Участники ООО не… …   Юридический словарь современного гражданского права

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»